
www.manaraa.com

DESIGN AND DEVELOPMENT OF AN INTELLIGENT NEURO-FUZZY SYSTEM

FOR AUTOMATED VISUAL INSPECTION

by

JONATHAN KILLING

A thesis submitted to the Department of Mechanical and Materials Engineering

in conformity with the requirements for the degree of

 Master of Science (Engineering)

Queen’s University

Kingston, Ontario, Canada

July 2007

Copyright © Jonathan Killing, 2007

www.manaraa.com

 ii

Abstract
Automated visual inspection (AVI) is an attractive way for companies to reduce the cost

of part inspection. By using a camera system to inspect parts, there is a reduction in the

required labour and a potential for higher production rates. This is especially important in

the automotive industry where product life is usually short and part suppliers are

increasingly being expected to deliver perfect parts to their customers. However, the set-

up of an AVI system can be difficult, especially for companies with little or no previous

vision system experience. As a result, training times are long and the potential benefits

are often not fully realized.

The work of this thesis focuses on the design and development of an image-processing

algorithm that can help to reduce training time and compensate for variations in the

physical environment such as the surface illumination. The developed software uses

‘intelligent’ algorithms (specifically neural networks and fuzzy logic) to allow the system

to learn the inspection process from examples of good and bad parts. Through the

example images, the user is not only providing the information to produce a correct

classification, but also, indirectly, the expected variation in the images. This means that,

unlike traditional systems, the intelligent algorithm does not need to be explicitly told the

allowable magnitude of variation.

The algorithm was tested on both laboratory-generated images and a database of files

provided by an industrial client. The results suggest that example based training

significantly improves training time. For images where there is a clear difference between

pass and fail, the classification performance was found to be comparable to traditional

threshold based algorithms. When more subtle differences are present, the neuro-fuzzy

system has a slight performance advantage. A user interface was developed to enable

implementation and future testing in an industrial environment.

www.manaraa.com

 iii

Acknowledgements

I would like to thank Dr. Brian Surgenor and Dr. Chris Mechefske for initiating such an

interesting project and one that expands the boundaries of Mechanical Engineering. I also

want to thank Dr. Surgenor especially, both for his enthusiasm for the project, and also

his patience with the number of other activities I was involved with during my time at

Queen’s.

Kornel Farkas, Sam Li, and Jeff Liaw at Van Rob were instrumental in developing this

project, providing an industry perspective, and giving feedback along the way.

I also want to recognize the financial support provided by the Mechanical and Materials

Engineering Department, Queen’s University, NSERC, and AUTO21 which has been

crucial to my ability to continue my education.

Finally, many, many thanks to my family – my parents (Margaret and Steven) for their

love, support, and advice, and my brother (David) for being a great sounding board for

ideas during this project.

www.manaraa.com

 iv

Table of Contents

ABSTRACT ii
ACKNOWLEDGEMENTS iii
TABLE OF CONTENTS iv
LIST OF FIGURES viii
LIST OF TABLES xv
NOMENCLATURE xvi

CHAPTER 1. INTRODUCTION 1

1.1 Problem Overview 2
1.2 Thesis Objectives 6
1.3 Organization of Thesis 6

CHAPTER 2. LITERATURE REVIEW 8

2.1 Quality Inspection 8
2.2 Automated Visual Inspection 12

2.2.1 Image Acquisition 14
2.2.2 Pre-Processing 16
2.2.3 Feature Extraction 16
2.2.4 Recognition 17

2.3 Camera Configuration 17
2.3.1 Lens Selection 17
2.3.2 Camera Setup 19

2.4 Image Processing Approaches 22
2.4.1 Pixel-Based 22
2.4.2 Pattern Matching 22
2.4.3 Feature-Based 23

2.5 Feature Extraction Methods 24
2.5.1 Edge Finding Methods 24
2.5.2 Hough Transform for Lines 26
2.5.3 Hough Transform for Circles 28
2.5.4 Grayscale Hough Transform 30
2.5.5 Colour Processing 30

2.6 Threshold-Based Classification 32
2.7 Fuzzy Logic Classifiers 34

2.7.1 Input Fuzzification 35
2.7.2 Rule Evaluation 37
2.7.3 Output Defuzzification 38

2.8 Neural Network Classifiers 40
2.8.1 Network Structure 41

www.manaraa.com

 v

2.8.2 Nodal Activation Functions 42
2.8.3 Training of the Network 43

2.9 Neuro-Fuzzy Classifiers 43
2.9.1 ANFIS 44

2.10 Creating a Neuro-Fuzzy Network 46
2.10.1 Grid Clustering 47
2.10.2 Discrete Incremental Clustering 47
2.10.3 Subtractive Clustering 48

2.11 User Interface 49
2.12 Previous Work 50
2.13 Summary 53

CHAPTER 3. ALGORITHM DEVELOPMENT 54

3.1 Feature Extraction 56
3.1.1 Image Processing Methods 57
3.1.2 Line Extraction 59
3.1.3 Circle and Hole Extraction 64
3.1.4 Colour Patch Extraction 67
3.1.5 Locating the Feature Search Region 70
3.1.6 Classification Methods 72

3.2 Data Clustering Methods 74
3.2.1 Grid Clustering 76
3.2.2 Discrete Incremental Clustering 77
3.2.3 Subtractive Clustering 78
3.2.4 Formation of Fuzzy Rules 81

3.3 Training the Neuro-Fuzzy Network 82
3.4 Optimizing the Neuro-Fuzzy Network 84
3.5 Rule Re-formation 87
3.6 Online Operation 87

3.6.1 Confidence Evaluation 88
3.6.2 Detection of Unusual Data 89
3.6.3 Network Modification 90

3.7 Final Design 93
3.8 Summary 95

CHAPTER 4. USER INTERFACE 96

4.1 Configuration Window 97
4.1.1 Statistics Tool 99
4.1.2 Tracking Tool 100

4.2 Training Window 101
4.3 Real Time Operation 105
4.4 Summary 107

www.manaraa.com

 vi

CHAPTER 5. EXPERIMENTAL METHOD 108
5.1 Hardware Design 108

5.1.1 Overall design 109
5.1.2 Lighting 111
5.1.3 Camera 115
5.1.4 Background and Environment 116

5.2 Test set 116
5.3 Testing of Feature Extractors 119
5.4 Testing of Auto-Search method 122
5.5 Development of Baseline System 124
5.6 Testing Results and Discussion 128

5.6.1 Ease of Operation 128
5.6.2 Performance Measures 130
5.6.3 Lighting Change Robustness 130
5.6.4 Real World Variation 134
5.6.5 Ability to deal with Poor Viewpoints 137
5.6.6 Retraining of the Neuro-Fuzzy Network 142

5.7 Summary 143

CHAPTER 6. CONCLUSIONS AND RECOMMENDATIONS 145
6.1 Conclusions 145

6.1.1 Graphical User Interface 145
6.1.2 Neuro-Fuzzy System vs. Threshold-Based 145
6.1.3 Example-based learning 147

6.2 Recommendations 148

REFERENCES 150

APPENDIX A: ALGORITHM COMPONENTS 154

A.1 Major Methods used by the Algorithm 154
A.2 Data Structures 156
A.3 Subroutines (m-files) 159

A.3.1 AutoSearch Directory 159
A.3.2 Clustering Directory 160
A.3.3 Feature Extractors Directory 163
A.3.4 siftDemoV4 Directory 168
A.3.5 GUI Directory 169
A.3.6 OnlineAdapt Directory 171
A.3.7 Utilities Directory 171

APPENDIX B: QVISION USER’S GUIDE 179

B.1 Introduction 179
B.1.1 Installation 180

B.2 Inspection Example 181

www.manaraa.com

 vii

B.3 Configuration Window 183
B.3.1 File Menu 183
B.3.2 Feature Menu 184
B.3.3 Fixture Menu 185
B.3.4 Window Menu 185
B.3.5 Toolbox 186
B.3.6 Statistics Window 186
B.3.7 Auto-search 188
B.3.8 Fixture Window 188
B.3.9 Job Summary Area 189
B.3.10 Feature Definition Area 190
B.3.11 Feature Attributes Area 191
B.3.12 Image Set Area 191

B.4 Training Window 193
B.4.1 File Menu 193
B.4.2 Method Menu 193
B.4.3 Process Menu 193
B.4.4 Window Menu 194
B.4.5 Job Summary Area 194
B.4.6 Feature Data Tab 195
B.4.7 Membership FNs/Groupings Tab 196
B.4.8 FIS Structure Tab 197
B.4.9 Optimizations Tab 198
B.4.10 Testing Tab 199

B.5 Camera Window 201
B.5.1 File Menu 201
B.5.2 Processing Menu 201
B.5.3 Window Menu 202
B.5.4 File Summary Area 202
B.5.5 Inspection Area 202
B.5.6 Camera Area 203
B.5.7 Image Set Area 204

APPENDIX C: CAMERA SPECIFICATIONS 205

APPENDIX D: DATASET DESCRIPTION 209

D.1 Dataset 1 209
D.2 Dataset 2 210
D.3 Laboratory Generated Dataset 214

www.manaraa.com

 viii

List of Figures

Figure 1.1 3 The cross-car beam provided by Van Rob Stampings for testing of
the algorithm during development. A close-up of one of the clips is
shown inset.

Figure 1.2 5 Human operators (foreground) double checking the output from
the machine vision system (background) because of poor machine
vision system performance.

Figure 2.1 10 Semi-automated inspection systems assist a human operator by
tracking tools to ensure they have completed all tasks at a
particular assembly station (Wilson, 2006)

Figure 2.2 11 A coordinate measuring machine (Brown & Sharpe, 2007)

Figure 2.3 12 An example of an Automated Visual Inspection system installed at
Van Rob Stampings. The system uses two cameras mounted on a
robot (visible inside the cage) and displays the results to the
operator via the console unit (foreground)

Figure 2.4 13 General components of an Automated Visual Inspection system.

Figure 2.5: 14 Steps in the AVI process

Figure 2.6 18 The geometry of a simple camera lens system

Figure 2.7 20 These two images were taken with the same focus setting but
different iris sizes. The image on the left has a narrow depth-of-
field due to a wide open iris, resulting in blurred foreground and
background objects.

Figure 2.8 21 Clipping can occur if the range of intensities in the scene falls
outside the available range of the camera sensor.

Figure 2.9 25 Output of the Canny edge detector (right) on the image of a J-clip
(left).

Figure 2.10 26 Mapping of the image space to Hough space. Each of the infinite
family of lines that go through point A in the image space votes for
a particular slope and y-intercept combination (three examples are
shown). All the votes for one family produce a straight line when
plotted in Hough Space.

www.manaraa.com

 ix

Figure 2.11 27 Repeating the mapping procedure outlined in Figure 2.10 to all of
the edge points (two examples are shown) results in multiple
voting lines in Hough Space. The coordinates of the region in
Hough Space with the largest number of votes (C), gives the slope
and y-intercept of the most probable line represented by the edge
pixels.

Figure 2.12 28 A basic Hough circle detection method. Each pixel in the edge
image creates a circle of votes at a fixed radius from the point. The
location with the highest number of votes is the most likely centre-
point location.

Figure 2.13 29 A more computationally efficient method of locating circle centres
from the edge points. Each edge point votes for a line of centre-
point locations. The direction of the gradient at each edge point is
used to orient the line direction.

Figure 2.14 31 The RGB colour space (left) is native to the camera, but the HSV
colour space (right) can help in processing colour information.
(The Mathworks, 2007)

 Figure 2.15 33 Dividing the input space using threshold values for each dimension
results in perpendicular boundaries which may not capture the
desired class division.

Figure 2.16 35 Steps in a fuzzy inference system.

Figure 2.17 36 Example of the difference between crisp and fuzzy sets. The crisp
set changes classification suddenly at 20°C, but the fuzzy set
allows for a gradual change.

Figure 2.18 37 The structure of fuzzy rules and relationship to the rest of the fuzzy
system. Inputs are fuzzified into linguistic variables which form
the antecedent part of the rule. The antecedent parts are used to
compute the output of each consequent part.

Figure 2.19 39 The process by which the rule consequent membership functions
are combined to calculate a single crisp output for the network.

Figure 2.20 40 Defuzzificiation of singleton outputs becomes a simple weighted
average of the singleton values.

Figure 2.21 41 A generic neural network structure.

Figure 2.22 45 The parts of the ANFIS network

Figure 2.23 48 The three possible cases for the DIC method: (1) the existing
membership functions are sufficient, (2) existing membership
functions are expanded to cover the new point, (3) a new
membership function is created.

www.manaraa.com

 x

Figure 2.24 49 Concept of the Mountain Clustering Method which is the basis for
Subtractive Clustering. The height of each peak is related to the
number of data points which fall into that region of the grid

Figure 3.1 60 The gradient sum methods of locating lines in the image.

Figure 3.2 61 The gradient maximum method of locating angled lines in the
image. Note the effect of ‘noise’ from other strong edges in the
image that prevents the correct edge from being extracted properly.

Figure 3.3 63 Cropping of the Hough Space image limits the allowed angle range
of the detected line (in this example, angle is limited to ±5
degrees). The line that would be detected is shown by the location
of the dot.

Figure 3.4 64 The ‘Squiggle’ feature consists of a series of line segments
extracted for discrete bands of the image. This type of feature tends
to work well on smaller objects.

Figure 3.5 65 The process of detecting a circle using circular warping of the
original image. By distorting the original image to a linear one, it is
possible to use line extraction algorithms to find the strongest
linear edge and thus the strongest circle.

Figure 3.6 70 The process by which colour patches are extracted from the image.
Pixels which reach the threshold for saturation are considered
‘colourful’ enough to be included when determining the area for
each hue segment.

Figure 3.7 71 The fixturing process involves defining one or more feature search
areas relative to fixture objects (left). When the fixture object
moves, the feature search region will also be moved (right). In this
example, if fixturing was not used, the edge of the clip would fall
outside the feature search area.

Figure 3.8 75 Uni-modal distribution (left) is common in dimensional inspection
whereas bi-modal or multi-modal occurs in assembly inspection
(right).

Figure 3.9 77 An example where grid clustering fails to capture the nature of the
data distribution. The left-hand region does not contain enough
divisions to separate the two classes while the right-hand region
has many divisions but only contains one class.

Figure 3.10 79 Subtractive clustering can create multiple membership functions
that are redundant since it creates a new membership function for
each identified cluster.

www.manaraa.com

 xi

Figure 3.11 80 Membership function complexity is reduced using grouping
methods. In this case, the original 32 membership functions
generated during subtractive clustering (top) can be reduced to
only 2 (bottom) while still capturing the underlying data
distribution.

Figure 3.12 84 Training of a neural network can proceed too far so that the
network is too specific to the training set. By holding some data
back to use for checking, training can be stopped when the network
stops improving the checking result.

Figure 3.13 92 Assigning blame to a particular membership function is simply a
matter of determining the antecedent member with the lowest
degree of association.

 Figure 3.14 92 Updating of a membership function with new data is accomplished
by moving the function slightly so that the firing strength
requirement is satisfied.

Figure 3.15 94 The three major modules that make up the QVision system

Figure 4.1 97 The Configuration Window gives access to functions for setting up
the inspection problem and loading example images.

Figure 4.2 99 The Feature Statistics screen shows a plot of the feature attribute
values separated into pass (inverted triangles) and fail (upright
triangles). A strong left/right separation of the two data sets (for
example the Line A – Score values) indicates a feature attribute
that differentiates well between pass and fail images.

Figure 4.3 101 The Tracking tool first locates SIFT keypoints in the source image
(a), then locates matching keypoints in the second image and
determines a mapping (b). The search region is then transformed
by the same mapping, and merged with the original region (c). The
final result is checked by extracting the feature from the original
image.

Figure 4.4 102 The training window gives access to tools for the development of
the classification system.

Figure 4.5 103 The FIS Structure part of the Training Screen shows the network
connections between inputs, membership functions, rules, and
outputs.

Figure 4.6 105 The Testing tab of the Training Screen. The green dots indicate the
output value from the classifier for each image. A value of 1 is a
pass image and 0 is a fail images. If the decision is uncertain, the
point is circled to indicate an unusual image.

www.manaraa.com

 xii

Figure 4.7 106 The Camera window shows live images from the camera and the
classifier output for the current image. In this case the image has
been identified as a Pass with a confidence of 0.43. Stored images
can also be loaded (right-hand column of images).

Figure 5.1 110 The exterior of the laboratory test cell showing sliding door at the
front. Exterior lighting is visible above the top panel.

Figure 5.2 112 Exterior lighting on the test cell consists of two incandescent
halogen sources, and one 4 foot fluorescent source.

Figure 5.3 113 Interior lighting in the test cell consists of two 2 foot long, high
frequency fluorescent lights, and one LED ring light mounted to
the camera.

Figure 5.4 114 Four examples of the range of lighting that is possible in the test
cell. Clockwise from top left: external incandescent, all internal
lights, external fluorescent and incandescent, LED.

Figure 5.5 117 An example of one of the images used for training and testing the
classification system.

Figure 5.6 118 Sample of the images from the Van Rob image set. The first image
is from the early development of the system and has more colour
information. The latter three images are from the newer images
and provide additional views.

Figure 5.7 120 Testing target used for early development of the algorithm. Linear
edges and round circles allowed easy verification of the feature
extraction results.

Figure 5.8 121 The features used for testing with the laboratory-generated images.

Figure 5.9 123 The original and automatically expanded regions for the line
feature on the edge of the J-clip.

Figure 5.10 124 Results from extracting features using the auto-expanded search
region on three images from the training set. In the left two images,
the clip edge is correctly identified, but in the right image, an edge
the background causes incorrect extraction.

Figure 5.11: 126 Two examples of the calculated threshold position in relation to
histograms of the pass (right) and fail (left) feature attribute data.
The lower diagram shows a case where the threshold can separate
the data fairly well. However, in the upper diagram, many images
will be misclassified due to the overlap of the pass and fail data.

Figure 5.12 131 Features and feature search parameters used for testing of
robustness to lighting change.

www.manaraa.com

 xiii

Figure 5.13 133 Data plot for the feature attribute used by the threshold method.
Although the data is well segmented, the two centre points share
the same value making perfect separation by a threshold
impossible.

Figure 5.14 135 Features used for the inspection of a push clip in View 2.

Figure 5.15 138 A close-up view of the features used for identification of the J-Clip
in View 2. Parts of a robot gripper are visible in the background.

Figure 5.16 139 Close-up of the J-clip in View 2 showing the challenge in
identifying faults (brightness and contrast have been increased for
clarity). The left clip is inserted properly, the centre clip tang is not
engaged, and the right image shows a bent beam.

Figure 5.17 140 Plot of the pass (inverted triangles) and fail (upright triangles) data
for the first three attributes for J-clip inspection. The nine
additional fail images (circled) make the Hole-Score attribute no
longer perfectly segregated.

Figure B.1 186 The Configuration window toolbox.

Figure B.2 187 The feature statistics screen.

Figure B.3 189 The fixture editing screen.

Figure B.4 190 The Job Summary portion of the Configuration window

Figure B.5 190 The feature definition panel.

Figure B.6 191 The feature attributes panel.

Figure B.7 192 The image set area of the Configuration screen.

Figure B.8 195 The Job Summary area for the Training window.

Figure B.9 195 The feature data plot in the Training window.

Figure B.10 196 The membership function plot in the Training window

Figure B.11 197 The threshold grouping plot in the Training window

Figure B.12 198 The neuro-fuzzy structure display in the Training window.

Figure B.13 199 The optimization display in the Training window.

Figure B.14 200 The testing screen plot in the Training window.

Figure B.15 202 The inspection area of the Camera window

Figure B.16 203 The camera control panel of the Camera window

Figure C.1 206 Specification sheet for the Cognex® 5400C camera in use at Van
Rob (Sure, 2007)

Figure C.2 207 Specification sheet for the Basler 312fc Camera (Basler, 2007)

www.manaraa.com

 xiv

Figure C.3 208 Specification sheet for the imi tech IMC1080FT Camera (imi tech,
2007)

Figure D.1 210 An example of “View 2” under the original lighting conditions at
Van Rob. Two clips need to be inspected as indicated.

Figure D.2 211 An example of “View 2” from the second Van Rob image set. Two
clips need to be inspected as indicated.

Figure D.3 212 An example of “View 8” from the second Van Rob image set. Four
clips need to be inspected as indicated.

Figure D.4 213 An example of “View 9” from the second Van Rob image set.
Three clips need to be inspected as indicated.

Figure D.5 214 An example of a pass image from the laboratory generated image
set

Figure D.6 215 An example of a pass image with the clip rotated but still correctly
installed

Figure D.7 216 An example of a fail image from the laboratory generated image
set

www.manaraa.com

 xv

List of Tables

Table 2.1 38 A sample of AND/OR operators that can be used with continuous
variables (µA(x), µB(x)). These are the four operators available in
the MATLAB® environment (Kecman, 2001).

Table 5.1 132 Results of testing Neuro-Fuzzy and Threshold algorithms on
images with differences in lighting

Table 5.2 136 Results on Testing Neuro-Fuzzy and Threshold Algorithms on
classification of ‘View 2’ push clip images.

Table 5.3 139 Results from identification of clip presence for the J-clip in View 2

Table 5.4 141 Performance of the classifiers on inspection of the J-clip in View 2

Table D.1 211 Summary of the images included for View 2

Table D.2 212 Summary of the images included for View 8

Table D.3 213 Summary of the images included for View 9

www.manaraa.com

 xvi

Nomenclature

Glossary
antecedent The input side of a fuzzy rule

backpropagation A method for training neural networks

blob A region of pixels grouped together by similar properties

consequent The output side of a fuzzy rule

crisp set A classification set that requires points to be fully associated
with one and only one subset.

crisp values Scalar numerical values

degree of association The degree to which a crisp value belongs to a linguistic
variable as determined by the membership function

false negative A part which is failed but should have been passed

false positive A part which is passed but should have been failed

fan-out Layer of a neural network which passes values to the next set of
nodes without modification

feature vector A vector of scalar values which can be used to represent some
aspect of an image or object

firing strength The degree to which a fuzzy rule is satisfied

fixture A reference feature or set of features that can be used to locate
an object in an image

fuzzy set A set of membership functions

golden image An image that is used as a standard to which all subsequent
images are compared

linguistic variables Variables that represent concepts like ‘hot’ rather than
numerical values

membership functions Functions that relate crisp values to linguistic variables

neuron One node of a neural network that computes its output based on
the state of the nodes to which it is connected.

QVision The name of the software developed during this project

singleton A single scalar value used as the output from fuzzy rules

www.manaraa.com

 xvii

Acronyms
ANFIS adaptive neuro-fuzzy inference system

AVI automated visual inspection

DIC discrete incremental clustering

FIS fuzzy inference system

GUI graphical user interface

HSV hue saturation value

IAL intelligent automation laboratory

MF membership function

NF neuro-fuzzy

RMS root mean square

SIFT scale invariant feature transform

www.manaraa.com

 1

Chapter 1

Introduction

Manufacturers are experiencing ever greater pressures to meet a multitude of business

demands. In this complex manufacturing environment, the basic requirement of

inspection and quality control is often overlooked as an area for research and improved

productivity. With automotive companies introducing “zero defect” policies, inspection

costs have risen dramatically (Luko, 2000). Improved automated inspection systems have

the potential to counter these rising costs.

The objective of this research is to improve the parts inspection component of the

manufacturing process through the application of intelligent (neuro-fuzzy) systems. The

development of this system is being undertaken concurrently at five universities across

Canada. Researchers at each university are looking at industrial inspection problems from

www.manaraa.com

CHAPTER 1. INTRODUCTION 2

partners in the automotive sector. These problems represent inspection tasks which are

either not suited to current vision inspection systems, or are suffering poor performance

with the existing algorithms. A summary of the project background is given in Norman et

al. (2006).

A flexible inspection system such as is outlined in this thesis should be faster to train,

more adaptable to changing conditions, and have the potential to expand automated

visual inspection (AVI) systems as a practical and economical way for industry to

perform inspection tasks.

1.1 Problem Overview

AVI systems have been used for many years in industrial applications. The flexibility of

these systems is attractive as it means the same hardware can be used for several

applications. There is also a level of comfort for operators to work with a system that acts

on the same data humans use – visible light. However, there is also a tendency to forget

that the human vision system is quite complex. Inspection tasks that humans do easily

can be very difficult for a computer system to perform.

In an industrial environment, the problem is even worse due to conditions in the assembly

area. Typically, the process being inspected is not shielded from the rest of the plant

allowing light, smoke, dust, and other contaminates to enter the inspection area. Although

www.manaraa.com

CHAPTER 1. INTRODUCTION 3

these changes in the environment are automatically compensated for by the human visual

system, they can render a finely tuned AVI system useless.

One problem that makes vision systems so vulnerable is the reliance on fixed thresholds

to analyze the image. Fixed thresholds are easily disrupted by changes in the environment

since the output changes suddenly whenever the input crosses the threshold.

A good real-world example of these types of problems occurred at Van Rob Stampings.

This company produces stamped metal parts for the automotive industry. As part of the

process to produce a particular dashboard mount, 46 metal clips are inserted into the

beam in order to provide replaceable threads for the fasteners (see Figure 1.1). The clips

are inserted both manually and by automated equipment during various stages of the

process. At the final inspection station, the beams are checked to ensure that all of the

clips are present and correctly inserted into the beam.

Figure 1.1: The cross-car beam provided by Van Rob Stampings for testing of the
algorithm during development. A close-up of one of the clips is shown inset.

www.manaraa.com

CHAPTER 1. INTRODUCTION 4

In the past, the inspection was done manually using two or three human inspectors to

check each clip. Although this process works, it is slow and expensive. In addition,

human fatigue can reduce the reliability of the inspection over time.

In an attempt to improve the process, an AVI system was installed that used a robotic arm

to move the camera to various locations on the beam and inspect the clips. The area

where the inspection was performed was open to the environment of the plant and also

contained three other robots responsible for inserting clips into the beam. This setup

created a number of problems for training:

• The light level varied depending on the time of day, other processes in the plant,

and the flicker from the low frequency overhead lights.

• The background of the images contained motion from the other robots, workers

loading and unloading parts, and machinery in other regions of the plant.

• The clip appearance changed drastically depending on the angle of the clip to the

camera.

Through trial-and-error changes to the structure of the inspection area, the lighting, and

the camera position, many of these problems were reduced. However, the upgrades took

about a year to complete and the final system was still not as reliable as desired, still

requiring a human inspector to double-check the output of the machine vision system (see

Figure 1.2).

www.manaraa.com

CHAPTER 1. INTRODUCTION 5

Figure 1.2: Human operators (foreground) double checking the output from the machine
vision system (background) because of poor machine vision system performance.

Through discussions with several other companies it was found that similar problems are

encountered by small to medium sized businesses that are attempting to implement

machine vision into existing production processes.

www.manaraa.com

CHAPTER 1. INTRODUCTION 6

1.2 Thesis Objectives

The purpose of this project is to try to improve the performance of existing AVI systems.

Specifically, the goal is to use a neuro-fuzzy approach to make the system more tolerant

to changes in the process environment.

In order to develop a working algorithm more quickly, five different universities are

participating in the project, working on the same set of data. Since there are many

possible approaches, each school is attempting to specialize on one approach only. The

research at Queen’s University focuses on using the Adaptive Neural Fuzzy Inference

System (ANFIS) implementation in Matlab®. This is a well supported platform and has

shown positive results for other projects undertaken by the Queen’s Intelligent

Automation Laboratory (IAL) (Samhouri, 2005).

Through the whole development process, the focus is on the final use. The system can not

be a solution to one specific problem, but needs to be a general algorithm that can work

with minimal modifications for a variety of applications. In addition, it has to be intuitive

and familiar in order to gain acceptance into the industrial environment.

1.3 Organization of Thesis

This thesis is organized as follows. Chapter 2 gives a review of the literature on topics

relevant to the research undertaken, both as background and to indicate the current state

www.manaraa.com

CHAPTER 1. INTRODUCTION 7

of development. Chapter 3 discusses the development of the algorithm and the reasons

behind the inclusion of the various components. At the end of Chapter 3, the structure of

the final algorithm is given. Chapter 4 covers the user interface developed as the user-

friendly link to the algorithm functions. Chapter 5 outlines the test apparatus that was

constructed in the IAL at Queen’s University, and the results of using this apparatus to

test the algorithm performance on both lab-generated images, and images supplied by

Van Rob. Finally, Chapter 6 summarizes the major findings of this thesis and presents

possibilities for future work.

www.manaraa.com

 8

Chapter 2

Literature Review

2.1 Quality Inspection

In general, quality control in the manufacturing process aims to reduce the variability in

the product in order to meet functional and/or aesthetic requirements. Quality inspection

is one method to ensure that the product quality is maintained. Depending on the

production rates and the complexity of inspection, some or all parts may be inspected. If

only a sample is checked, then the results are analysed statistically to draw conclusions

about the remainder. Full inspection is usually preferred as it does not require statistical

extrapolation in order to determine the overall quality of parts. However, for full

inspection to be feasible, the parts must either be produced at a low rate, have very simple

inspection needs, or automated inspection methods must be used.

www.manaraa.com

CHAPTER 2: LITERATURE REVIEW 9

Low production rates are not common since they are not desirable for many reasons.

Similarly, simple inspection is rarely the choice since the more detailed the inspection,

the more defects can be found and classified in order to correct the process that creates

them. Therefore, many companies are looking to automated inspection systems to

increase productivity and reduce rework (Thomas, 2006).

Inspection requirements for most parts can be classified into three main categories: part

location, dimensional analysis, and surface condition (Hunter, 1995). Part location

involves verifying correct assembly of parts by ensuring that components are present and

properly aligned. Dimensional analysis measures the size of various components and

component features to ensure correct production of the part. Surface condition

observations verify surface finish requirements and check for damage sustained during

the manufacturing process.

To automate these processes, a wide variety of methods have been developed. Semi-

automated approaches use equipment and/or software to assist a human inspector in

making the correct measurements and recording the results (see Figure 2.1). These

devices remove much of the thinking process from the human operator, but still require a

labour force. This negates the potential cost savings possible with a fully automated

system.

www.manaraa.com

CHAPTER 2: LITERATURE REVIEW 10

Figure 2.1: Semi-automated inspection systems assist a human operator by tracking tools
to ensure they have completed all tasks at a particular assembly station (Wilson, 2006).

Coordinate measuring machines (CMMs) are another example of semi-automated

inspection whereby a part is analyzed by touching a probe to key reference points on the

component (see Figure 2.2). The inspection process is relatively slow and requires

isolated facilities away from the dust and vibration of the assembly area. Therefore, it is

typically only used for a small sample of parts or when very high precision is required.

www.manaraa.com

CHAPTER 2: LITERATURE REVIEW 11

Figure 2.2: A coordinate measuring machine (Brown & Sharpe, 2007)

For high speed, and to reduce the quantity of custom tooling that is required for

inspection, it is desirable to avoid mechanical contact with the parts. Automated Visual

Inspection (AVI) is one such method that has been steadily gaining popularity as more

flexible approaches are required. An AVI system uses a camera to capture a visual image

of the part. Computer processing is then performed to extract relevant features of the

object and determine if the part has been correctly manufactured. An example of an

industrial AVI system is shown in Figure 2.3.

www.manaraa.com

CHAPTER 2: LITERATURE REVIEW 12

Figure 2.3: An example of an Automated Visual Inspection system installed at Van Rob
Stampings. The system uses two cameras mounted on a robot (visible inside the cage)

and displays the results to the operator via the console unit (foreground)

2.2 Automated Visual Inspection

Visual inspection has been the way that parts have been inspected by humans for a long

time. The appearance of the part can show surface defects, incorrect assembly, and part

damage. AVI systems attempt to use this same information about the appearance of the

part to do the inspection without human intervention. If AVI systems were as capable as a

human inspector, no physical changes to the inspection environment would be required.

www.manaraa.com

CHAPTER 2: LITERATURE REVIEW 13

However, the human visual system is quite complex and what seems a trivial task may

require months of training for an automated system.

Because of the wide variety of operating conditions in manufacturing facilities, AVI

systems vary greatly in design. However, almost all systems have three main

components: a camera, an illumination system, and some form of processing device as

shown in Figure 2.4. In many cases some or all of these functions are combined into a

single unit.

Figure 2.4: General components of an Automated Visual Inspection system.

www.manaraa.com

CHAPTER 2: LITERATURE REVIEW 14

The process by which the appearance of the part is captured and then processed to

determine a final accept/reject decision can be broken into four main parts as shown in

Figure 2.5 and described below.

Figure 2.5: Steps in the AVI process

2.2.1 Image Acquisition

Acquiring the image consists not only of the optical capturing process occurring within

the camera, but also of the lighting that makes the objects in the scene visible. One of the

most difficult stages of the setup process is to find a camera and lighting configuration

that gives the best view of the feature to be inspected. The lighting should highlight the

feature in a way that accentuates the definition (Novini, 1985).

For example, when surface finish is being inspected, a low angle light will accentuate the

surface texture. However, for inspecting the diameter of a hole on the same part, a strong

backlight may give a better contrast to extract the circle shape. Although the ideal

inspection conditions are rarely met due to constraints on the physical system, time spent

www.manaraa.com

CHAPTER 2: LITERATURE REVIEW 15

at this stage can make the software design and implementation process much easier.

Approaches to sensor planning are well summarized by Tarabanis et al. (1995).

In challenging environments, it may be necessary to actually add information to the

scene. For example, attaching fiducial markers (targets of a known size, pattern, or

location) to the parts can assist the vision system in determining the orientation and scale

of the part (Fiala, 2004). In some cases, the markers are temporary, while others are

applied as part of the manufacturing process. An added advantage of this system is that

the marker can also contain identification numbers which allow the parts to be tracked

through the assembly process.

Another method of adding information to the scene is to project structured light onto the

part. If the light pattern is known, then the distortion of that pattern on the part can give

dimensional information. This technique is particularly useful where information about

the depth of the object is required. For example, Chung et al.(Chung, 2006) looked at

using structured lighting to inspect cars on an automotive assembly line. To inspect for a

vehicle door being open, a line of light was projected onto the body panels. If the line

was continuous, the door was determined to be closed. If the line was not continuous, it

was possible to tell that the door was ajar. This determination would be much more

difficult if general illumination was used.

www.manaraa.com

CHAPTER 2: LITERATURE REVIEW 16

2.2.2 Pre-Processing

Pre-processing steps include transformations such as altering contrast, enhancing edges,

or changing tone. The goal at this stage is to highlight the features of interest and

diminish background noise.

In some cases, pre-processing can be used to compensate for deficiencies in the physical

conditions. For example, lighting-related problems such as colour shift, shadows, and

specular reflections are quite common. Finlayson (2001a, 2001b, and 2002) has published

several papers on correcting some of these problems using illumination models. For most

industrial cases, however, the correction of illumination simply consists of having an

auto-gain or auto-iris control on the camera in order to keep the overall intensity constant.

Since many algorithms rely on being able to segment the image into light and dark

regions, accurate control over lighting intensity can be a crucial.

2.2.3 Feature Extraction

In order to simplify the image, it is typically broken into features. These are

representations of a group of pixels with some common characteristic such as texture,

colour, or intensity. More complex features group pixels which appear to represent edges,

lines, or other shapes.

The parameters of each feature are usually specified in terms of scalar values which can

be combined to form a feature vector for the entire image. The feature vector can be

www.manaraa.com

CHAPTER 2: LITERATURE REVIEW 17

considered a compact representation of the contents of the image. Thus, a feature-based

approach reduces the quantity of information that needs to be processed by subsequent

stages. Feature extraction methods are discussed further in Section 2.5.

2.2.4 Recognition

In this final stage, the feature vector is processed to decide if the part is acceptable. This

may be a fairly simple test such as the presence or absence of a single feature, or may

involve very complex processing. Programming an AVI system to perform recognition is

usually labour intensive and requires many trial-and-error steps. Improving the

recognition stage of the AVI system is the main goal of this thesis work.

2.3 Camera Configuration

In order to obtain a clear image from the camera with the most useful information

possible, the camera must be configured both physically and in software.

2.3.1 Lens Selection

Although most camera specifications focus on the number of pixels on the sensor, the

lens used determines what portion of the scene each of the pixels represent. Because most

machine vision lenses do not have a zoom control, the field-of-view of the camera is

fixed. One of the benefits of this system is that objects in the image will remain the same

size for a given distance from the camera. This allows real-world distances to be

computed from the number of pixels an object occupies in the image.

www.manaraa.com

CHAPTER 2: LITERATURE REVIEW 18

Because the angle of view is fixed, it must be selected to give the desired field of view at

the operating distance to the part. In situations where the camera position is also a

variable, there are then a number of focal length/camera distance combinations that will

produce the same field of view (see Figure 2.6).

Figure 2.6: The geometry of a simple camera lens system

The difference is that if the camera is further away from the part, the effect of perspective

will be decreased. That is parallel lines on the part will appear more parallel. A camera

that is very close to the part with a wide angle lens will tend to distort the image.

On the other hand, having the camera far away from the part means there is more chance

for vibration in the camera mount to create blur, and for particles in the air to reduce the

www.manaraa.com

CHAPTER 2: LITERATURE REVIEW 19

image quality. Therefore, a good balance between distance and distortion must be found

for the particular application.

2.3.2 Camera Setup

Once the camera has been mounted in place and the lens fitted, the image can be

displayed on-screen and adjusted to give the clearest image. First, focus must be adjusted

to make the part crisp. The overall intensity of the image can then be set using the gain

control of the camera and/or the iris control. A higher gain or longer exposure tends to

create more noise in the image. To use lower gains or shorter exposures, the iris of the

camera (also called the aperture), must be opened wider to allow more light into the

camera. However, opening the iris also influences the depth-of-field of the camera which

is the range of distances that are in focus. A larger aperture creates a narrower depth-of-

field and thus only objects a specific distance from the camera will be in focus (an

example is shown in Figure 2.7). A good balance should be achieved between the depth-

of-focus, and the gain of the camera such that noise from the sensor electronics does not

start to interfere with the image and the entire part is in focus.

www.manaraa.com

CHAPTER 2: LITERATURE REVIEW 20

Figure 2.7: These two images were taken with the same focus setting but different iris
sizes. The image on the left has a narrow depth-of-field due to a wide open iris, resulting

in blurred foreground and background objects.

In balancing the gain, shutter speed, and aperture size, the final goal should be to arrive at

an overall intensity that captures both the bright and dark regions of the part. If possible,

the brightest highlights should not exceed the maximum pixel value as this means that

information is being lost. Additionally, no pixel in the dark regions of the part should

have a value of zero as this could be interpreted as any intensity below the threshold of

the camera. Meeting these requirements in practice is often difficult (especially for

metallic parts), because the intensity of highlights can often be hundreds of times the

intensity of the surrounding surface. The normal range of digital camera pixels is only 0-

255, so some clipping often occurs as shown in Figure 2.8.

www.manaraa.com

CHAPTER 2: LITERATURE REVIEW 21

Figure 2.8: Clipping can occur if the range of intensities in the scene falls outside the
available range of the camera sensor.

For a colour camera, there are some additional settings. One of the most important is the

white balance which determines the correction that is applied to the red, green, and blue

pixel values in order to make the colours appear natural in the final image. White balance

is done by focusing the camera on a white surface under the expected lighting. The

correction values are then adjusted in order to achieve an average grey image (all colour

intensities equal).

www.manaraa.com

CHAPTER 2: LITERATURE REVIEW 22

2.4 Image Processing Approaches

Since almost all computer images are captured as an array of pixel values, all

computations on images must start from the pixel values. However, there are many ways

to interpret the image.

2.4.1 Pixel-Based

The simplest processing method is to work on the pixel values directly. Image properties

such as average intensity, ratio of dark to light pixels, intensity deviation, colour

histogram and similar overall measures are quick to compute and in some cases can

deliver all the required information.

However, the intensity and colour of a single pixel often has very little to do with the

contents of the image. A simple example would be the case where the part has shifted

position relative to the camera so that the part is no longer represented by the same set of

pixels.

2.4.2 Pattern Matching

For situations where the part appearance is known and is distinctly different than the

surroundings, pattern matching can be used. This technique works by comparing a model

of the object against the source image. By trying all possible locations of the part at all

possible rotations and/or scales, the most probable location of the part can be found. The

main issue with a pattern matching approach is that as the number of allowed degrees-of-

www.manaraa.com

CHAPTER 2: LITERATURE REVIEW 23

freedom of the part increases, the problem becomes very computationally expensive

(Davies, 2005).

A more flexible version of pattern matching is to match points on the model against

points in the image. A mapping can then be determined based on the match locations.

The Scale Invariant Feature Transform (SIFT) method developed by Lowe (2004) is one

way to match points between the model and the image. The method develops key-points

based on peaks in the gradient image at various resolutions. A vector of local descriptors

(such as gradient directions, and magnitudes) for the key-points in the model is created.

These descriptors can then be compared to the descriptor vectors for the key-points in the

image to determine likely matches.

2.4.3 Feature-Based

For inspection tasks where specific dimensions and relationships between objects are

important, it is usually necessary to extract high level features from the image such as

lines, circles, and colour patches. This approach attempts to mimic the way that human

visual processing is thought to break down scenes into basic shapes before they are

processed for recognition. As such, it is very intuitive to see an image represented by

outlines, colours, and basic shapes.

Using high level features also reduces the amount of data that must be handled by the

recognition system since each feature represents the characteristics of a region of pixels.

www.manaraa.com

CHAPTER 2: LITERATURE REVIEW 24

For example, a line feature summarizes all the pixels in the region of that line segment

with only three values: the perpendicular distance to the origin, the angle of the line, and

how strongly the pixels support the existence of that particular line.

2.5 Feature Extraction Methods

Technically, feature extraction is any process which acts on an image and returns some

description of the image. This may be the position of lines, pixels which satisfy a certain

criteria, or more statistical values such as the mean and standard deviation of each row or

column. Which feature description is used depends highly on the application. The goal is

to produce the most meaningful data that will clearly highlight the object of interest.

This section focuses on feature extraction methods for high level features such as lines,

circles, and colours. These features are not always the best descriptors for analysis of an

image, but have the advantage of being very intuitive for the user to interpret.

2.5.1 Edge Finding Methods

Finding shapes in the image usually starts with locating edges. In image processing, an

edge is defined as a location where the intensity of the pixels changes suddenly.

Reflected light intensity is strongly related to the angle of the reflecting surface to the

camera. So, locations of sudden pixel intensity change usually correspond well with the

physical edges of the part, where faces with different angles are meeting. Of course, there

www.manaraa.com

CHAPTER 2: LITERATURE REVIEW 25

are other conditions that can trigger false detection of an edge such as surface printing

(text, graphics, etc.), shadows, and highlights.

One of the simplest ways to detect an edge is to produce a gradient map. This is an image

in which the value of each pixel represents the magnitude of gradient in the original

image. The gradient magnitude is calculated by:

22,, yxyx GGG
y
fG

x
fG +=

∂
∂

=
∂
∂

=

where f is the intensity of the image at location x, y (Gonzalez et al., 2004). The direction

of the edge can also be determine by the relative strength of the x and y components.

Candidate edge points are highlighted by looking for the strongest gradient values in the

image. In some cases, a threshold is used to count all gradient values above a certain

value as being edges. In other methods, a search is performed starting from the peaks in

the gradient and tracing out continuous edge paths. The Canny edge detection method is

one such method that is very popular (Gonzalez et al., 2004). An example of the output of

the Canny edge detector on an image is shown in Figure 2.9.

Figure 2.9: Output of the Canny edge detector (right) on the image of a J-clip (left).

www.manaraa.com

CHAPTER 2: LITERATURE REVIEW 26

2.5.2 Hough Transform for Lines

The edge finding methods only produce a list of pixels that are potential edges. However,

for many applications, it is more useful to know if these edge points form a particular

shape. The Hough Transform is one way to perform this search (Davies, 2005).

The Hough Transform uses a mapping of the x, y image space to a virtual space which

describes some parameter of the pattern of interest. For example, the most common

Hough Transform is for the detection of lines in the image. Each pixel that was identified

as an edge in the image is considered as a vote for all possible lines that go through that

point. These votes are transferred into a Hough space with axes of slope and y-intercept.

With these axes, each pixel in the image will create a line of votes in the Hough space

(see Figure 2.10).

Figure 2.10: Mapping of the image space to Hough space. Each of the infinite family of
lines that go through point A in the image space votes for a particular slope and y-

intercept combination (three examples are shown). All the votes for one family produce a
straight line when plotted in Hough Space.

www.manaraa.com

CHAPTER 2: LITERATURE REVIEW 27

In the simple case where the edge image contains only a single line of pixels, the effect of

adding votes to the Hough space will be to create a peak where all the voting lines

intersect. This point will represent the slope and y-intercept parameters of the line that

was in the source image (see Figure 2.11).

Figure 2.11: Repeating the mapping procedure outlined in Figure 2.10 to all of the edge
points (two examples are shown) results in multiple voting lines in Hough Space. The

coordinates of the region in Hough Space with the largest number of votes (C), gives the
slope and y-intercept of the most probable line represented by the edge pixels.

The basic Hough transform has a duality of mapping points in the image to lines in

Hough space, and points in Hough space to lines in the image. However, there is a

problem when the slope of the line approaches infinity (vertical line) because the Hough

space has to be of finite size. To get around this problem, the lines can be represented

using the angle of the line and the perpendicular distance to the origin. Since the angle is

bounded from -180 to 180 degrees, and the perpendicular distance cannot exceed the

www.manaraa.com

CHAPTER 2: LITERATURE REVIEW 28

diagonal dimension of the source image, the Hough space has a finite size. The challenge

with this representation is that edge points in the image now map to sinusoidal curves in

the Hough Space making computation slightly more complex. However, the concept is

still the same – the strongest intersection of the sinusoidal curves identifies the angle and

perpendicular distance of the strongest line in the source image.

2.5.3 Hough Transform for Circles

Since the first basic Hough method was developed, it has been modified to suit detection

of many different shapes. For instance, there is also a Hough Transform method for

detection of circles. The problem with circles is that there are three parameters for each

circle (radius, X position, and Y position). This means that either the search must be

performed for each potential radius (as shown in Figure 2.12), or the Hough space must

be made three dimensional. A three dimensional voting space is much harder to handle,

both in memory requirements, and in determining the location of peak values.

Figure 2.12: A basic Hough circle detection method. Each pixel in the edge image creates
a circle of votes at a fixed radius from the point. The location with the highest number of

votes is the most likely centre-point location.

www.manaraa.com

CHAPTER 2: LITERATURE REVIEW 29

Peng (2006) developed code that implements a more computationally efficient method of

Hough circle detection. As mentioned earlier, computing the gradient provides both

magnitude and direction information. By using the directional information, it is possible

to separate the search for circles into independent searches for the centre of the circle and

for the radius.

The possible centre-point locations are determined by extending lines perpendicular to

the gradient direction at each edge point (see Figure 2.13). Considering each line as votes

for a particular circle centre-point, a peak in votes will occur at the actual circle centre.

Once the circle centre is identified, the radius of the circle can then be found by locating

the radius which encompasses the highest number of edge pixels.

Figure 2.13: A more computationally efficient method of locating circle centres from the
edge points. Each edge point votes for a line of centre-point locations. The direction of

the gradient at each edge point is used to orient the line direction.

www.manaraa.com

CHAPTER 2: LITERATURE REVIEW 30

2.5.4 Grayscale Hough Transform

Normally, the Hough Transform is computed from binary image edge points. However,

this means that all pixels vote equally in Hough space regardless of how strong the

gradient is at that point. In order to give more proportional voting, the votes can be based

on the magnitude of the gradient corresponding to each edge point. This method typically

improves results but requires more computation.

2.5.5 Colour Processing

So far, all the methods that have been discussed are based on processing of greyscale

images. However, in some applications the colour information is significant to the

problem. Colour processing is challenging as the representation of colour in terms of

pixel values often has little to do with the human visual interpretation of colour. This is

especially true in looking at a range of colours. For example, to consider a range of red

colours, it may be tempting to consider only those pixels with red component values that

fall within specified limits. However, this does not consider the effects of the other two

colour components.

One way to relate the colours to a more intuitive model is to transform from the standard

red, green, blue (RGB) colour space to the hue, saturation, value (HSV) space (see Figure

2.14). This model makes it easier to isolate specific colours (hue), identify only

www.manaraa.com

CHAPTER 2: LITERATURE REVIEW 31

“colourful” objects (saturation), or ignore the colour and look only at how bright the

object is (value) (Gonzalez et al., 2004).

Figure 2.14: The RGB colour space (left) is native to the camera, but the HSV colour
space (right) can help in processing colour information. (The Mathworks, 2004).

The main challenge with the HSV space is that the Hue is expressed as an angle between

0 and 360 degrees. This means that there is a discontinuity between the colour at 0 and

the colour at 360. In most models, this occurs in the red region.

In order to actually extract colour information as a feature, the colours of each pixel in

the region-of-interest must be summarized in some way. One way is to look at colour

patches or blobs. Blobs have a specific meaning in image analysis and refer to contiguous

regions of pixels that have similar properties. In this case, hue is the property of interest.

By segmenting the hue space into equally spaced divisions, it is possible to group pixels

www.manaraa.com

CHAPTER 2: LITERATURE REVIEW 32

by colour and then look for the largest groups of similarly coloured pixels. The overall

properties of these regions (area, centroid, average colour) can then be used as features.

2.6 Threshold-Based Classification

In the case of quality inspection, the recognition stage typically consists of a simple

classification of the part as either pass or fail.

If there are a total of n feature attributes extracted from the image and each attribute is

considered to be a dimension of the input space, then the role of any classification

method is to divide the input space into n-dimensional regions that denote the boundaries

of pass and fail zones. Input values are then classified by which zone they fall into.

Traditional AVI systems use a fixed threshold method where the feature values are

compared to limits set manually during the setup processes. Each dimension is

considered critical so that if any dimension fails a threshold test, the entire part fails. This

approach is common for dimensional checking where sizes must be within a specific

range in order to fit with other assemblies.

Threshold cannot always produce the class division required. For example, if there are

two input dimensions, then the input space is planar and the threshold will divide the

input space into rectangular regions. However, if the true division follows an angled or

www.manaraa.com

CHAPTER 2: LITERATURE REVIEW 33

curved boundary, threshold-based classification will not be able to correctly classify all

of the points (see Figure 2.15). The same principle holds for higher dimension input

spaces.

Figure 2.15: Dividing the input space using threshold values for each dimension results in
perpendicular boundaries which may not capture the desired class division.

An extension to the basic threshold system is to consider each dimension independently.

After the class of each input dimension is determined, they are combined to decide on an

overall decision. This means that if one feature is poorly extracted or missing, it is still

possible to make a judgment based on the results of the majority. The method by which

the inputs are combined may be as simple as taking the mean or mode of the

classifications for each input.

One of the main issues with a threshold-based system is its sensitivity to noise in the

image. Since each input decision is made on the basis of a threshold value, a small

www.manaraa.com

CHAPTER 2: LITERATURE REVIEW 34

change in the input value can cause the classification to transition suddenly from pass to

fail. This may be a favourable attribute for dimensional inspection where each dimension

is critical. However, for other types of problems such as surface and assembly inspection,

it is preferable to have the classifier change its output gradually to allow for changes in

the image due to environmental conditions, lighting, and part position.

“Intelligent” or “soft-computing” algorithms are one way to achieve more gradual

changes in output. Two popular concepts in this area are Fuzzy Logic, and Neural

Networks.

2.7 Fuzzy Logic Classifiers

Fuzzy logic evolved from the desire to train computer systems with human expertise.

Converting the knowledge of the human expert to an equation that a computer can

process is difficult when the process involves a number of variables and conditions. By

encoding the human experience in a series of IF-THEN rules, fuzzy logic is able to

produce a smooth output surface for all input combinations without an explicit model of

the process involved (Nguyen and Walker, 2006).

Fuzzy inference systems have three main stages: input fuzzificaton, rule evaluation, and

output defuzzification as shown in Figure 2.16 and described below.

www.manaraa.com

CHAPTER 2: LITERATURE REVIEW 35

Figure 2.16: Steps in a fuzzy inference system.

2.7.1 Input Fuzzification

Input fuzzification involves conversion of the numerical input values (called crisp values)

into linguistic variables. Linguistic variables are labels such as 'HOT' or 'COLD' which

relate more to the way that a human would describe the value. Each input has its own set

of membership functions which define how input values are mapped to the linguistic

variables. Membership functions are typically trapezoidal, triangular or Gaussian in shape

and are permitted to overlap. Each membership function is a subset of the overall fuzzy

set for that input dimension.

As opposed to traditional crisp sets, fuzzy sets allow data points to be partial members of

a subset and also members of more than one subset. The degree to which an input value

belongs to a particular subset is referred to as the degree of association and takes a value

anywhere from zero (no association) to one (complete association).

The concept of fuzzy sets can best be illustrated through an example. Consider a scenario

where temperature is being classified. A crisp set approach would be to make two

www.manaraa.com

CHAPTER 2: LITERATURE REVIEW 36

subsets: HOT and COLD. If the boundary between these subsets was at 20°C as shown in

Figure 2.15, then 19.9°C would be considered COLD whereas 20.1°C would be

considered HOT. This does not fit well with the human interpretation of hot and cold as

there is some grey area around 20°C where the temperature would be 'a bit cold', or 'not

very hot'.

Figure 2.17: Example of the difference between crisp and fuzzy sets. The crisp set
changes classification suddenly at 20°C, but the fuzzy set allows for a gradual change.

To capture these concepts, a fuzzy logic set would have overlapping membership

functions with sloping sides so that temperatures around 20°C would have some degree

of association with both the HOT and COLD subsets. For the case of membership

functions shown in Figure 2.17, the temperature of 20.1°C would have a degree of

association with the HOT subset of about 0.7 and with the COLD subset of 0.3.

www.manaraa.com

CHAPTER 2: LITERATURE REVIEW 37

2.7.2 Rule Evaluation

Once the inputs are fuzzified into linguistic variables, they can be used for evaluating

rules without explicitly referring to the underlying numerical values. The basic structure

of a rule is given as an IF, THEN statement as shown in Figure 2.18.

Figure 2.18: The structure of fuzzy rules and relationship to the rest of the fuzzy system.
Inputs are fuzzified into linguistic variables which form the antecedent part of the rule.

The antecedent parts are used to compute the output of each consequent part.

Continuing with the previous example of temperature, there may be a rule such as:

IF (T is COLD) AND (∆T is NEGATIVE) THEN (Heater Power is HIGH)

The first portion of the rule is referred to as the antecedent part. Terms in the antecedent

part refer to the input linguistic variables (which in turn are defined by the input

membership functions) and are joined using a union operator such as AND or OR. It is

the degree of association of each antecedent variable that is ANDed or ORed together to

evaluate the rule. However, the standard AND/OR functions can only be evaluated when

the input variables are binary (logical one or zero). Since the degree of association value

www.manaraa.com

CHAPTER 2: LITERATURE REVIEW 38

is continuous, several AND/OR operator alternatives have been developed (see Table 2.1

for some examples).

Table 2.1: A sample of AND/OR operators that can be used with continuous variables
(µA(x), µB(x)). These are the four operators available in the MATLAB® environment

(Kecman, 2001).

AND OR
Minimum
MIN(µA(x), µB(x))

Maximum
MAX(µA(x), µB(x))

Algebraic Product
µA(x)µB(x)

Algebraic Sum
µA(x) + µB(x) – µA(x)µB(x)

The union of the antecedent degree of association values forms the firing strength for the

rule. The firing strength can be considered a measure of how well the rule has been

satisfied. If a rule is fired strongly, then the right side of the statement (called the

consequent) should contribute strongly to the final output.

The consequent side of the rule is linked to output linguistic variables. These variables

may be represented by membership functions (similar to the input side), or can be single

scalar values (called singletons). The firing strength of the associated rule is used as a

weight for that consequent output during the defuzzification process.

2.7.3 Output Defuzzification

The purpose of the defuzzification process is to combine the outputs from each rule into a

single crisp output value for the whole network. If the outputs of the rules are

www.manaraa.com

CHAPTER 2: LITERATURE REVIEW 39

membership functions, then the firing strength of the rule is used to calculate a truncated

area underneath the membership function. The areas from each rule are then combined

and the centroid is taken as the output value (see Figure 2.19). For faster processing, the

centre of area calculation can be modified from a true centroid calculation to simpler

approximations.

Figure 2.19: The process by which the rule consequent membership functions are
combined to calculate a single crisp output for the network.

For the case of singleton consequents, the calculation is simply a weighted average of

each singleton where the weights are the firing strengths of the rules (see Figure 2.20).

This calculation is much less computationally expensive than the area centroid method so

singleton outputs are preferred where speed is an issue.

www.manaraa.com

CHAPTER 2: LITERATURE REVIEW 40

Figure 2.20: Defuzzificiation of singleton outputs becomes a simple weighted average of
the singleton values.

By using either the centroid or weighted average calculations, fuzzy logic systems are

able to produce a smooth continuous output, even for inputs that are different from the

training set. This simulates the human ability to make reasonable interpolations between

known information and to make judgements about previously unknown conditions.

2.8 Neural Network Classifiers

Artificial neural networks attempt to mimic the learning ability of the human brain using

a series of interconnected neurons. Each neuron is fairly simple, containing only an

activation function that causes the neuron to fire when the weighted sum of its inputs

exceeds a threshold value. By connecting all of the neurons into a large network, and

connecting them with weighted links, it is possible to form fairly complex relationships

between the inputs and outputs (see Figure 2.21).

www.manaraa.com

CHAPTER 2: LITERATURE REVIEW 41

Figure 2.21: A generic neural network structure.

The main advantage of a neural network is that it is possible to use examples of inputs

along with the desired output to train the network without knowing the relationship that

links the data. Once trained, the network is able to produce outputs for new input data as

long as it is similar to the training data. This technique is very useful in cases where the

relationship between inputs and outputs is very complex and/or there is no expert

knowledge available.

2.8.1 Network Structure

The term “neural network” covers a wide range of network structures and designs. One of

the most common types consists of several layers of nodes. Input and output nodes are

connected by one or more hidden layers which allow processing to occur. Data is

transferred along nodal links to other parts of the network but the importance of each link

www.manaraa.com

CHAPTER 2: LITERATURE REVIEW 42

can be modified by adjusting the link weight. The link weight will scale the value

travelling along that path before it reaches the next node. Each layer of the network is

computed in parallel and then passed on to the next layer. The process continues until the

last layer where a numerical classification is output. This type of network is referred to as

a feed-forward neural network (Mehrotra et al., 2000).

More advanced networks may have interconnections between nodes on the same layer

and/or connections to previous layers. However, these types are more complex to process

and train, as they require an iterative approach during evaluation in order to have the

output settle to a consistent value.

2.8.2 Nodal Activation Functions

To evaluate each node, the input values are added together in order to determine a single

value that will be used as an input to the activation function. The activation function can

be any function that maps the input sum to an output between zero and one. Often this is

a fixed threshold, but sigmoid functions are also common. Training is easier if the

function is continuously differentiable as many of the training algorithms utilize the

derivative (Mehrotra et al., 2000).

In addition to the links from previous layers, many neural networks also have a fixed

input to each node. This input provides a bias to the summation in order to shift the

www.manaraa.com

CHAPTER 2: LITERATURE REVIEW 43

activation point up or down. The value of the bias node is always set to one, and the

weight of the link between it and the node is determined through the training process.

2.8.3 Training of the Network

The training of a feed-forward neural network is essentially a large optimization problem.

The weights of the links between nodes are the variables, and the difference between the

network output and the desired output is the error to be minimized. Backpropagation is

one method to perform the optimization and works by making incremental changes to the

link weights.

As the name suggests, the backpropagation method starts at the output nodes and

computes the error in the network output. The amount each node has contributed to the

error is then calculated and link weights are adjusted to attempt to correct the problem.

Since so many parameters are being changed at the same time, each link weight is only

changed by a very small amount so that the process is kept under control (Mehrotra et al.,

2000).

2.9 Neuro-Fuzzy Classifiers

Fuzzy logic has been introduced as a way to mimic human ability to draw inference

between known states. The neural network has also been discussed as a way to have some

degree of learning from example data. By combining neural networks and fuzzy logic, it

www.manaraa.com

CHAPTER 2: LITERATURE REVIEW 44

is possible to create a system that can not only learn but can also produce a smooth output

between trained examples.

One of the problems with a pure neural network is that once it is trained there is little

information that can be extracted on how the system is performing the calculations.

Consequently, if the network is not performing as desired, it is difficult to improve

without starting from scratch and training with new data.

In order to increase the ability to interpret the neural network, neuro-fuzzy systems

impose a strict structure on the neural network. The layers of the neural network become

the stages of the fuzzy logic system. This means that after training, the network

parameters can still be extracted and examined.

The use of fuzzy logic with neural networks also means that the fuzzy logic parameters,

instead of requiring expert input, can be trained through the neural network optimization

process.

2.9.1 ANFIS

Since there are many different neural networks and types of fuzzy logic, there are also

many types of neuro-fuzzy implementations. Adaptive-Network-based Fuzzy Inference

System (ANFIS) is one implementation that has gained some popularity partly because it

is included in the MATLAB® family of products.

www.manaraa.com

CHAPTER 2: LITERATURE REVIEW 45

The ANFIS structure as defined by Jang (1993) is quite general. However, the

MATLAB® implementation is more restricted. For the MATLAB® ANFIS, the adaptive

network consists of a five layer feed-forward network as shown in Figure 2.22, all of the

links in the network have unity weight so the network is only changed through changes to

the connection pattern and the functions inside the nodes.

Figure 2.22: The parts of the ANFIS network

The first layer is a fan-out layer which passes the input values to the nodes in the next

layer without modification. The second layer contains the membership functions that

convert the crisp input variables into linguistic variables (fuzzification). The third layer

contains the rules. The connection of each rule node to the input membership function

nodes determines the antecedent parts of the rule. The fourth layer contains the output

membership functions. The third and fourth layers always contain the same number of

nodes and are connected one-to-one. This is because each rule must have its own output

www.manaraa.com

CHAPTER 2: LITERATURE REVIEW 46

function. The fifth and final layer combines the inputs from each output in order to form

a single numerical output (defuzzification).

Through the training process, the parameters of the membership functions (Layer 1

nodes) can be changed as well as the value of the output functions or singletons (Layer 4

nodes). The number of membership functions, which membership functions are

connected to which rules, and the number of rules is not changed by the training

algorithm. Because of this, it is important to develop a good prototype network before

training begins.

2.10 Creating a Neuro-Fuzzy Network

A key step in developing a good prototype network is creating an appropriate number of

membership functions. Well defined membership functions should each define some

characteristic of the input data. They should also cover the used portion of the input space

with some overlap but be distinct enough that two membership functions do not represent

the same data. When two membership functions cover the same area, it is difficult for the

training algorithm to differentiate which function should be modified. It also makes it

difficult for later interpretation of the rules as two rules may have different antecedent

membership functions but actually be acting on the same data.

www.manaraa.com

CHAPTER 2: LITERATURE REVIEW 47

The most common methods of creating membership functions are grid clustering, discrete

incremental clustering, and subtractive clustering.

2.10.1 Grid Clustering

The simplest method of distributing membership functions is to create a grid. Each

dimension of the input space is divided into equal size portions and a membership

function is applied to each division. This ensures that the functions are evenly distributed

and properly overlapped. However, it does not account for any pre-existing distribution

patterns in the data, so some areas may be over-segmented while others lack division.

2.10.2 Discrete Incremental Clustering

To better consider the data distribution, Discrete Incremental Clustering (DIC) can be

used (Wang et al., 2004). DIC works by taking each data point from the training data and

deciding if a new membership function is required (see Figure 2.23). If an existing

membership function already covers the new data point, then either no changes are made,

or the existing set is expanded to further cover the new point. If the new point is outside

any existing functions then a new membership function is created. Limits can be set on

the amount of allowed overlap between functions, the maximum function size, and the

rate of function growth. Because the DIC algorithm considers points consecutively, it

cannot consider the overall distribution.

www.manaraa.com

CHAPTER 2: LITERATURE REVIEW 48

Figure 2.23: The three possible cases for the DIC method: (1) the existing membership
functions are sufficient, (2) existing membership functions are expanded to cover the new

point, (3) a new membership function is created.

2.10.3 Subtractive Clustering

Subtractive clustering looks for overall clusters in the data. Subtractive clustering is a

modification of the Mountain Clustering method (Yager and Filev, 1994). As shown in

Figure 2.24, the concept is to consider densely populated regions of the dataset as peaks

or mountains. The highest peak is identified and considered as the first cluster centre. All

the points that are within the radius of influence of the first peak are then suppressed so

that two very close peaks are not both selected. This helps to avoid excessive overlap of

the clusters. With nearby peaks suppressed, the next highest peak is selected and stored as

a cluster centre. The process is repeated until no significant peaks remain.

www.manaraa.com

CHAPTER 2: LITERATURE REVIEW 49

Figure 2.24: Concept of the Mountain Clustering Method which is the basis for
Subtractive Clustering. The height of each peak is related to the number of data points

which fall into that region of the grid.

For each cluster centre that is identified, a membership function is created in each

dimension that is aligned with the centre of the cluster. When forming an ANFIS

structure, a new rule is also created with the new membership functions as antecedents.

This approach maintains a link between the data, the membership functions, and the

rules.

2.11 User Interface

The earliest AVI systems were programmed in a text-based environment and provided

little visual feedback to the user about what was being inspected. However, it became

clear that improved productivity and acceptance could be achieved with graphical user

www.manaraa.com

CHAPTER 2: LITERATURE REVIEW 50

interfaces (GUIs). Some early work in this area was done by Hunter, Graham, and Taylor

(1995). Their work focused on an intuitive description language for defining the feature

extraction and a graphical display of the extracted points and lines.

Graphical interaction is now common in human-computer interaction and is expected as

the norm in most software packages. In AVI processes, the graphical nature of the data

makes displays even more important. It also reduces the amount of time required to setup

the problem by allowing point-and-click operation.

2.12 Previous Work

The use of soft-computing techniques to improve AVI systems is not new. It has often

been applied in situations where traditional methods have not produced satisfactory

results. Typically, however, this is done on a case-by-case basis and does not generalize

well to other applications.

The seaming of food cans was the focus of an inspection system developed by Marino et

al. (2001). Their paper is a detailed documentation of the process from identification of

the needs of the problem to development of a hardware and software solution. The

authors use traditional image extraction methods to keep up with the high speed process.

www.manaraa.com

CHAPTER 2: LITERATURE REVIEW 51

The cans are then classified based on a fuzzy network which was selected for its ability to

mimic the reasoning of the human inspectors.

Lee and Bien (1997) applied fuzzy logic to match models to image scenes for the purpose

of locating parts in random orientations. Both the model reference points and the

matching algorithm utilized fuzzy logic in order to allow for some distortion of the data

due to noise, occlusion, and changes in orientation. The use of fuzzy logic was an easy

way to allow some variation between model and image without explicitly having to

define the tolerance for each model and model point.

Pure neural network classification options were investigated by Pham and Bayro-

Corrochano (1995) for the inspection of valve stem seals. This was a case where human

inspectors were not able to inspect the parts satisfactorily due to the very small defects

and poor contrast of defects with the rest of the part. By using a high number of feature

parameters to measure the defects, they were able to successfully implement a multilayer

perceptron type of neural network to classify the defects. However, they needed to use

multiple networks in order to deal with the variation in the size of the defects observed.

The surface roughness of machined parts was predicted in work by Ho et al. (2002). The

system used very general information from images of the parts along with information

about the machining process. This data was combined with actual surface roughness

measurements to provide a training set for an ANFIS network. The results showed that an

www.manaraa.com

CHAPTER 2: LITERATURE REVIEW 52

ANFIS-based system improved performance over a previous polynomial network-based

system and gave an overall error of less than one percent.

Chen and Hoberock (1996) also implemented a neuro-fuzzy system for machine vision

inspection, but developed their own neuro-fuzzy structure (termed FUZAMP). This

structure is able to perform both online and offline training and is good at dealing with

uncertain visual measurement data. To show the performance of the method, they used

the system to classify cutlery in a commercial washing process. The new network

obtained higher accuracy than other neuro-fuzzy methods, but also took significantly

more processing time.

König, Genther, and Glesner (1993) developed a system that is most similar to the work

of this project in terms of general applicability. Their system is a generalized structure

which incorporates multiple methods for feature extraction, processing, and

classification. The use of multiple neural networks allows the one that is most effective

for a particular application to be selected. Neuro-fuzzy networks are not incorporated, but

the structure has been developed in an open way such that new classifiers and feature

extractors can be added.

Shafi (2004) published work on a very similar problem to the sample problem. The

inspection involved verification of dashboard beam insert clips similar to the push clips

from Van Rob. The paper provides a good insight into some of the trail-and-error steps

www.manaraa.com

CHAPTER 2: LITERATURE REVIEW 53

required to train a traditional system using Cognex® software. In this case, the Cognex®

PatFind tool was used to locate the clip centres and thus determine if the clip was present

or not.

2.13 Summary

This chapter presents some of the key concepts which were investigated in developing

the algorithm for this thesis. It also discusses some of the previous work done in the area

of neuro-fuzzy AVI systems. AVI is a rapidly developing field and rapid advances both

in hardware and software mean that there is a large body of work on the subject. For the

most part, however, the papers deal with solutions to specific applications. Although

these are important, it does not make the process of implementing a new system

significantly easier.

www.manaraa.com

 54

Chapter 3

Algorithm Development

For the Van Rob problem (presented in Section 1.2), machine vision is not the only

solution that will satisfy the inspection problem. Other methods such as contact-based

systems (probes), laser range finders, photo-eyes, or acoustic sensors could also be

employed. The advantage of Automated Visual Inspection over those (usually custom)

systems is that AVI requires little in the way of specialized hardware. So, if an assembly

line changes parts, the same camera and lighting can be used, and only the software needs

to be updated. However, software programming for existing AVI systems can be slow

and frustrating, especially for users not trained in image processing techniques (Garcia,

2006).

www.manaraa.com

CHAPTER 3: ALGORITHM DEVELOPMENT 55

Another way to improve the chances of success with the Van Rob system is to alter the

physical conditions. In the current setup, there are two other robots working in the area of

the inspection system. These robots are not coordinated and so often enter or leave the

image frame during image capture. The very bright lighting also causes strong reflections

from the part. These reflections change depending on the angle and shape of the part. The

background also changes since the camera sees through the part to the rest of the plant.

Finally, the parts are held on a revolving carousel which has four fixtures. Each fixture is

slightly different so the location of the part in the image is not always the same.

All of these problems have physical solutions that could be achieved with careful design

of the inspection environment. However, these types of problems are commonly found in

industry, especially at companies that are just starting to implement machine vision

systems. It is therefore desirable to have an algorithm that can compensate for, or deal

with, these environmental effects and make the AVI system a truly flexible solution.

For this project, each component of the processing algorithm was considered separately

for its ability to contribute to a generalized, robust system. The reasoning for inclusion of

each component is given in the following sections and the final algorithm layout is

described in Section 3.7.

www.manaraa.com

CHAPTER 3: ALGORITHM DEVELOPMENT 56

3.1 Feature Extraction

As discussed previously, high level feature extraction has many advantages over a pixel-

based approach. The features are clearer to the user, and the number of inputs to the

classifier is reduced. Since the time to train and run a classification system is strongly

related to the number of inputs (Mehrotra et al., 2000), reducing the inputs can lead to

faster processing. If the image were processed on a pixel by pixel basis, either the number

of inputs to the network would become large or the network would need to be run on

each pixel independently. The processing time issues associated with this approach were

illustrated in the work by Norman (2005).

One notable exception to the problem with pixel-based approaches is techniques that use

the entire image, for example, using a golden image to which all subsequent images are

compared. By detecting differences between the reference image and the captured image,

the system is able to detect errors. This method is very fast, but tends to be sensitive to

changes in lighting, shadow, and part position. For these reasons, this approach was not

pursued. For similar reasons, basic pattern matching methods were also not used.

The SIFT method has the potential to minimize the effect of appearance change as it can

focus on matching individual points. However, in the case of these components, the SIFT

method also had trouble making the correct matches. It is hypothesised that this is due to

www.manaraa.com

CHAPTER 3: ALGORITHM DEVELOPMENT 57

the similarity between features on the parts. For instance, the corner of a clip against a

featureless metal background will be similar to the other corners of the clip.

Considering the issues with lighting and appearance change, a feature-based approach

seemed to be a good solution. However, even after a feature-based approach was

selected, particular feature extraction methods had to be selected. Although the purpose

of this project was not to improve feature extraction techniques, much of the performance

of the system is dependent on how well the features are extracted from the image.

3.1.1 Image Processing Methods

Many feature extraction methods are based on processing of a binary image. The main

reason is that binary processing is very fast and is easy to implement into hardware. It

also makes it easy to measure properties of regions such as area, perimeter, etc. without

too much computational overhead. These attributes make binary processing popular for

high speed inspection where there is only limited processing time available.

The main problem with binary processing is that the binary image must first be created

from the greyscale or colour image from the camera. Typically this is accomplished using

a fixed threshold value. Pixel intensities above this threshold are set to white and those

below, to black. However, changes to the lighting, shading, or dust build-up can all

contribute to changes in the overall intensity level that can disturb the threshold system.

www.manaraa.com

CHAPTER 3: ALGORITHM DEVELOPMENT 58

Even with carefully aligned parts in a controlled environment, fixed thresholding can be

problematic due to changes in the part surface or colour.

An improvement to fixed thresholding is to determine the threshold-based on the average

value of the image, or the average of the local neighbourhood of the pixel. This local

thresholding method allows for some variation in the overall intensity levels.

If the local thresholding technique is extended one step further, variation on a pixel level

can be examined. This is the theory behind edge detection based on the image gradient.

The gradient tends to be more stable than the actual intensity values under different

lighting conditions.

Although the image gradient is fairly stable, it can still be challenging to select a

threshold for determining if a gradient value should be considered as an edge point.

Because the goal of this system is to provide improved reliability, algorithms were

examined that relied as little as possible on thresholds, tolerances, or external parameters

of any kind. Some of the simpler commercial systems meet these requirements, so initial

feature extraction attempts were based on methods derived from observations of how

commercial systems operated. These algorithms tend to be optimized for high speed

processing on simple hardware.

www.manaraa.com

CHAPTER 3: ALGORITHM DEVELOPMENT 59

It was also decided that no pre-processing would be performed on the image (such as

changing brightness or contrast). Although these changes can be useful for pattern

matching or human interpretation, they are less important when using a gradient

approach. They also usually lead to loss of information from the image as upper and

lower pixel values are clipped.

3.1.2 Line Extraction

A line feature is a linear grouping of edge features which in turn are areas of high

gradient in the image. For feature extraction within a user selected region-of-interest, the

feature extractor should select the most prominent line feature in that region.

If the approximate direction of the line is known ahead of time, fairly simple and fast

processing methods can be used. As discussed above, these methods were based on

observation of commercial systems (specifically the Cognex® system). The line

extraction method seemed to be based on use of the gradient image. If the gradient is

calculated perpendicular to the expected direction of the line, then it is possible to look

for the column of pixels that has the highest total gradient sum (see Figure 3.1). Because

the gradient sum can be both positive and negative, it is possible to isolate lines of

different polarities. This is sometimes useful in differentiating between two edges that

fall within the same search area.

www.manaraa.com

CHAPTER 3: ALGORITHM DEVELOPMENT 60

Figure 3.1: The gradient sum method of locating lines in the image.

Because the summations are evaluated by rows, the reported line will always be aligned

with the original search box. However, in many cases, the line may have shifted by a few

degrees from the expected value. This can be important information to the classifier.

To get a better idea of the true angle of the line, a modification was made to gradient

summation method. Instead of finding the strongest column, the strongest point was

found in each row. A line was then fit through these strongest points. The fitting could be

done with either all points as equal weight, or be weighted by value. This method was

able to detect small changes in angle for very simple images, but was sensitive to

outlying maximum gradient points in real images (see Figure 3.2).

www.manaraa.com

CHAPTER 3: ALGORITHM DEVELOPMENT 61

Figure 3.2: The gradient maximum method of locating angled lines in the image. Note the
effect of ‘noise’ from other strong edges in the image that prevents the correct edge from

being extracted properly.

For all of the techniques mentioned so far, if the line was expected to be at an angle, the

image had to be rotated before processing began. Rotation of an image by an arbitrary

angle is a fairly computationally intensive process and made a notable difference to the

total processing time.

To avoid rotation of the image, a Hough-based approach was adopted. The Hough

transform method involves mapping of edge pixels in the image into a Hough space

where each point represents a particular line in the source image (see section 2.5.2 for

details).

Standard Hough transforms act on a binary edge image such as that produced by the

Canny edge detection method (see Section 2.5.1). However, this gave equal importance

to all edge pixels regardless of their gradient values. It also required that thresholds be

selected for the Canny method. Since these thresholds would have to be modified for

www.manaraa.com

CHAPTER 3: ALGORITHM DEVELOPMENT 62

each situation, a modified Hough transform was used instead. This Hough transform

acted directly on the gradient values and added votes into Hough space using the gradient

values as weights.

By using a Hough space that is large enough to represent all possible lines that could pass

through the source image, it is possible to find the strongest line in any direction. Finding

the strongest line consists of running a peak finding algorithm on the resulting Hough

space image and correlating that peak to the appropriate line in the original image.

The line feature returns only three attribute values: the angle of the line (T) in degrees,

the perpendicular distance from the origin (R) in pixels, and the Score. The score is

evaluated as a percentage based on the number of votes the line gets in Hough space

compared to the number of votes it would get if the edge was a perfect black to white

transition.

For the Hough-based methods, the problem arose of how to restrict the range of angles if

the line orientation was known. The solution was to process the entire Hough image, and

then before the strongest peak was found, crop the Hough space image so that only the

angles of interest are included. Cropping of the Hough space image was fairly simple in

that the dimensions of the Hough space used were angle and perpendicular distance from

the origin (see Figure 3.3).

www.manaraa.com

CHAPTER 3: ALGORITHM DEVELOPMENT 63

Figure 3.3: Cropping of the Hough Space image limits the allowed angle range of the
detected line (in this example, angle is limited to ±5 degrees). The line that would be

detected is shown by the location of the dot.

After some experimentation with the line extractors, it was found that in some images,

the complex part shapes, reflections, noise, and low contrast caused the extracted lines to

sometimes vary greatly for similar part positions. It was found that the problem was that

the line was trying to generalize a very large area with several different edge locations.

This is one of the problems with feature-based processing, the advantage of having a

relatively simple feature representing a large number of pixels can mean that too much

information is lost in the process.

One solution would be to reduce the size of the area-of-interest so that several smaller

lines are extracted. However, this would be operator intensive. Instead, another feature

www.manaraa.com

CHAPTER 3: ALGORITHM DEVELOPMENT 64

type was added referred to as a Squiggle. Squiggles use the simpler gradient-based line

extraction to find short line segments in the area of interest. The area is divided vertically

and horizontally by a user defined number of divisions. The strongest line within those

rows or columns is then selected. The feature returns a high number of feature attributes

(position and strength for each line segment), but works well in regions where normal

lines do not represent the image well. Unfortunately, it is harder for the user to interpret

the results since the shape of the squiggle often appears to have little to do with the shape

of the part. The Squiggle extraction process is shown in Figure 3.4.

Figure 3.4: The ‘Squiggle’ feature consists of a series of line segments extracted for
discrete bands of the image. This type of feature tends to work well on smaller objects.

3.1.3 Circle and Hole Extraction

Circles and holes are extracted using a similar method to line extraction. The extractor is

still searching for a region with strong edges to define the circle, but now that search

must be done in a radial pattern.

www.manaraa.com

CHAPTER 3: ALGORITHM DEVELOPMENT 65

Several attempts were made to produce a fast, reliable circle extraction algorithm. Again,

the Cognex® system was used as a template. The first approach was to map the pixels in

an annular region to a rectangular space using a sampling routine. The resulting distorted

pixel image was then simply searched for a line to determine the radius of the circle (see

Figure 3.5). This method worked reasonably well, but did not allow for the circle to have

a centre anywhere other than the user defined centre location.

Figure 3.5: The process of detecting a circle using circular warping of the original image.
By distorting the original image to a linear one, it is possible to use line extraction

algorithms to find the strongest linear edge and thus the strongest circle.

A brute force method was used to fix the centre location problem by trying all possible

centre locations that fell within the search area. This method correctly located the circle,

www.manaraa.com

CHAPTER 3: ALGORITHM DEVELOPMENT 66

but took much too long to be of any practical use due to the repeated mapping of the

pixels that was required for each centre location.

Again the Hough transform was considered. In some ways a circular Hough transform is

actually easier to understand than the linear case. If the radius of the target circle is

known, then the process simply draws a circle around each pixel in the edge image.

Where these circles intersect are the probable locations of circle centres (see Section

2.5.3 for details).

When the radius of the circle is not known, the usual process is to simply expand the

Hough space into three dimensions where each layer represents a different radius. This

means that for each pixel in the edge image, a cone must now be created in Hough space

which is both memory and computationally intensive.

An alternate method is to use the directional information from the gradient map. Then,

instead of drawing circles around each pixel, it is possible to draw lines through them

perpendicular to the edge direction. Where all the lines overlap becomes the probable

centre of the circle. Working backwards from the centre, it is then possible to determine

the radius of the detected circle (see Section 2.5.3 for details).

For this project, two different circular shapes were defined: a “Hole” which has a known

radius, and a “circle” which has unknown radius. Holes are extracted using the two

www.manaraa.com

CHAPTER 3: ALGORITHM DEVELOPMENT 67

dimensional circular Hough transform. A hole feature returns three feature attribute

values: the X and Y location of the hole centre in pixels, and the Score of the hole (based

on the number of votes in Hough space for that hole compared to what it would be for a

perfect white circle on black background). Circles are extracted using the method

developed by Peng (2006) and return four feature attributes, three similar to the Hole

feature, plus the radius of the detected circle in pixels.

3.1.4 Colour Patch Extraction

Colour patches or 'blobs' are typically of limited use in the inspection of automotive parts

due to the monochrome nature of most metallic assemblies. However, in this application,

colour was clearly a strong indicator so a colour patch feature was included.

Colour is subjective and hard to define. Though digital imaging can give a numerical

breakdown of the red, green, and blue components in the light, it is still challenging to

relate these to acceptable colour ranges.

Part of the problem is that humans are very good at correcting for changes in lighting

intensity and colour to determine the true colour of an object (Finlayson, 2001). Thus,

two objects that may look very different to the camera could still be considered the same

colour by a human inspector.

www.manaraa.com

CHAPTER 3: ALGORITHM DEVELOPMENT 68

A colour extractor was first designed which averaged the red, green, and blue values over

the region of interest and reported this colour. There were several problems with this

approach. The first is that there are many strong highlights in the image which hit the

maximum pixel value limits (255, 255, 255). These tend to dominate the average and

make for very little variation in the colour data. The second problem is that objects in the

image that may appear to be fairly uniform colour may actually be made up of pixels of

several colours.

To deal with the multiple colour issue, the image was first blurred slightly using a

Gaussian filter. Because only colour data is desired, not having a crisp edge to the objects

is not a problem.

To better separate the major colour, a histogram approach was tried. A histogram

summarizes an image by counting all pixels that fall into a particular category. In the case

of a colour image, three histograms are produced, one for each colour band. Again, due to

the strong highlights, the 255 value bin in all bands was highly populated. By ignoring

this last bin, it was possible to neglect most of the highlights. However, it was found that

it was difficult to determine a shift in the histogram values for the clip being present or

not. Although there was some visible change, it would have been hard to get the

algorithm to recognize this shift using simple characteristics such as the peak location.

www.manaraa.com

CHAPTER 3: ALGORITHM DEVELOPMENT 69

Part of the problem was thought to be that the change was spread out over all three colour

channels. To try to consolidate the change to one layer, the colour space of the image was

changed to the Hue, Saturation, Value (HSV) System. The HSV system collects all of the

colour data into the hue channel and so responds more directly to colour shifts.

The other advantage of converting to HSV space is that grey values can be ignored in the

colour processing by only looking at pixels with saturation values above a certain

threshold.

One of the problems with the HSV space is a tendency for the hue channel to be fairly

noisy. In order to reduce the effect of noise in hue, the hue space was broken into very

coarse segments. The user is able to select how many segments are used and whether a

specific hue is being sought. When no specific hue segment is specified, the algorithm

will report the hue segment that has the largest number of pixels in the image. As shown

in Figure 3.6, pixels which have a high enough colour saturation are assigned to one of

the hue segments. Pixels that belong to the same segment are grouped together to form

regions (or blobs). The area of each blob is determined and the blob with the largest area

is used to generate four feature attributes: X and Y location of the centroid in pixels, the

mean value of the Hue segment in degrees, and the Area in square pixels.

www.manaraa.com

CHAPTER 3: ALGORITHM DEVELOPMENT 70

Figure 3.6: The process by which colour patches are extracted from the image. Pixels
which reach the threshold for saturation are considered ‘colourful’ enough to be included

when determining the area for each hue segment.

3.1.5 Locating the Feature Search Region

It was quickly found that one of the main problems with successfully extracting the

features from the image was proper location of the search area. If the part in the image

moved a significant distance, then the feature extractor would be acting on an area of the

image that may not even contain the feature of interest.

This problem was partially solved using a software-based fixturing approach. Fixturing is

a way of finding harder to locate features by first locating easier or more defined points

www.manaraa.com

CHAPTER 3: ALGORITHM DEVELOPMENT 71

on the same part. For instance, with the part shown in Figure 3.7, the edge of the metal

clip may move outside the narrow area-of-interest window, but to locate the pin on the

right side of the part, a much larger search area can be used because it is one of the only

circular parts in the image. Therefore, the pin becomes the fixture for the edge feature.

After locating the pin, the position of the search area can corrected so that it covers the

correct region of the part. If more features are used for fixturing, then it is possible to

adjust search areas both in location and orientation.

Figure 3.7: The fixturing process involves defining one or more feature search areas
relative to fixture objects (left). When the fixture object moves, the feature search region
will also be moved (right). In this example, if fixturing was not used, the edge of the clip

would fall outside the feature search area.

One of the dangers of using a fixturing technique is that if the fixture is not correctly

located, all other features that rely on it for alignment will not be extracted either. This

www.manaraa.com

CHAPTER 3: ALGORITHM DEVELOPMENT 72

was dealt with by using more than one fixture feature and taking the average position of

those that have were found.

Later on in the project, it was found that many industrial applications have sufficient

physical fixturing that the software-based fixture method was not required. However, for

other cases such as inspection of parts on a conveyor, the random orientation requires that

software fixturing be used.

3.1.6 Classification Methods

From the very beginning of this project, a neuro-fuzzy approach was selected as the

classification method. The intent was to determine if the advantages of neuro-fuzzy

systems would be beneficial in the area of AVI. In addition, the ANFIS structure and

training methods were used for their relative ease of implementation. However, there

were still several areas that needed careful consideration. Before the ANFIS structure can

be trained, a prototype structure has to be developed. In order to give good results, the

prototype should have an appropriate number of membership functions for each input.

There should also be a rule structure in place that has the necessary links between rule

nodes and membership function nodes. Finally, all of the operating parameters of the

neuro-fuzzy structure need to be defined such as: the type of membership functions to

use, the union and intersection operators, and the defuzzification method.

www.manaraa.com

CHAPTER 3: ALGORITHM DEVELOPMENT 73

Since there were no other guidelines to use, these parameters were initially left at the

default settings. Automatic structure generation is handled by MATLAB® if the ANFIS

function is called without a prototype structure. The default settings are: subtractive

clustering method to form the membership functions and define rules; outputs set to

linear mode (outputs are linear combinations of the input values); product operator for

combining the antecedent parts; and maximum value operator for combining consequent

parts.

After much experimentation, it was found that these were not the ideal parameters for this

problem. Some of the problems were due to performance issues, but most were because

the resulting network was not transparent enough to the user.

The first problem was that using linear output functions made the training of the network

very slow. It also meant that it was difficult to tell what each rule was doing. This is

especially true in the case of a pass/fail problem where it makes more sense for the output

of each rule to be contributing a constant value which drives the output either closer to a

pass or closer to a fail outcome. By making the outputs of the rules constant values, it is

also possible to look at the antecedent values for those rules and get some idea of what

input configurations are leading to specific pass decisions.

The second problem arose once a confidence value was required on the output. As will be

discussed further in Section 3.6.1, the confidence value is derived from the firing

www.manaraa.com

CHAPTER 3: ALGORITHM DEVELOPMENT 74

strengths of the rules. If the rules are combined using a product operator, it is more

difficult to determine which antecedent of which rule is causing the low value. By

changing the union operator to the minimum value instead, the offending antecedent can

be quickly found and remedied.

The final problem was that the input membership functions were often too overlapped

and did not clearly define one area of the data. This caused rules to be formed that were

essentially the same, adding to network complexity, and reducing clarity of the process.

The fix to this problem was to modify the clustering method. The changes made to the

clustering, membership and rule formation processes are described in the following

sections.

3.2 Data Clustering Methods

The feature extractors generate a feature vector for the image which contains all of the

relevant feature parameters from the image. When all of the images are processed a

feature matrix is formed. The goal of the clustering process is to create membership

functions which are located such that related data points will fall into the same cluster.

Clustering methods assume that the data is grouped around meaningful relationships. For

example, data points corresponding to pass images should have similar values to each

other. However, they should also be distinct from data points corresponding to fail

www.manaraa.com

CHAPTER 3: ALGORITHM DEVELOPMENT 75

images. It is expected that each feature attribute will have some distribution about a mean

value for each case. Not all quality control problems have this property. Consider the case

of identifying if a hole is the correct diameter. If the manufacturing process is operating

correctly, the expected distribution would be a single cluster about the correct mean

value. At some point, the value would drop below a certain threshold that makes it no

longer acceptable but this would be on the boundary of the central cluster (see Figure

3.8). In this case, clustering is probably not the best solution as both pass and fail points

would be included in the one central cluster. The solution presented here is focused on

problems which show multiple data clusters.

Figure 3.8: Uni-modal distribution (left) is common in dimensional inspection whereas
bi-modal or multi-modal occurs in assembly inspection (right).

There are many different methods for creating the membership functions. Grid clustering,

discrete incremental clustering (DIC), and subtractive clustering were investigated for

this project.

www.manaraa.com

CHAPTER 3: ALGORITHM DEVELOPMENT 76

3.2.1 Grid Clustering

Grid clustering is the simplest method as it divides all dimensions into an equal number

of uniformly spaced functions. The amount of overlap and the number of members for

each dimension is decided by the user. Grid clustering has the advantage that it maintains

the clearest membership functions. For example, if the dimension being divided

represented a length, then a human may break it into evenly distributed classes of long,

average, and short. Such clear categories make it easier to develop rules and also to

understand the operation of the final network. It is this relevance that is most difficult to

maintain with the more complex clustering algorithms.

However, because there is no consideration for the actual distribution of the data, grid

clustering often leads to either poor segmentation of the data of interest, or over-

segmentation of regions of the input space that do not have any relation to the problem

(see Figure 3.9). In addition, there is no way to determine which clusters should be

connected by rules since they are not related to the data. Therefore, the common approach

is to create all possible rules using combinations of the membership functions. The

resulting network then has so many rules that the ANFIS algorithm has trouble training

the network. It also becomes much harder for a user to interpret the final network.

www.manaraa.com

CHAPTER 3: ALGORITHM DEVELOPMENT 77

Figure 3.9: An example where grid clustering fails to capture the nature of the data
distribution. The left-hand region does not contain enough divisions to separate the two

classes while the right-hand region has many divisions but only contains one class.

3.2.2 Discrete Incremental Clustering

The DIC method is driven entirely by the data itself. The data grows the membership

functions be either supporting an existing member, or starting a new cluster. Restrictions

on growth help to keep functions from overlapping excessively and becoming indistinct.

On the surface, this appears to satisfy the ideal requirements by maintaining clear

functions while covering the input space well. The main problem with the DIC method

however, is that it is very sensitive to the order in which the data is presented. For

example, consider a uniform distribution of data over the input space. If the data is

presented in ascending order, then a single membership function will be grown and

expanded by each subsequent point. However, if they are presented in a more random

www.manaraa.com

CHAPTER 3: ALGORITHM DEVELOPMENT 78

order, multiple members will be created. Although some of this problem can be reduced

by merging membership functions at later stages, this method was considered too

variable for this application.

3.2.3 Subtractive Clustering

Subtractive clustering is the default clustering method used by MATLAB® to develop the

neuro-fuzzy structure. The advantage of this method is that it uses the data to develop the

clusters, but does so in a more global way than the DIC method. The result is that the

clusters are more consistent and more representative of actual groupings in the data.

As mentioned previously, the main problem with subtractive clustering is that when a

cluster is identified, a new membership function is created for all dimensions. Consider

the case of a simple 2D data set containing two clusters, as illustrated in Figure 3.10. The

members created along the first dimension are a good representation of the data.

However, the second dimension now contains two clusters which cover the same input

space. The training process will have difficulty with this network because it will be hard

to determine which membership function should be used for data-points in the second

dimension.

www.manaraa.com

CHAPTER 3: ALGORITHM DEVELOPMENT 79

Figure 3.10: Subtractive clustering can create multiple membership functions that are
redundant since it creates a new membership function for each identified cluster.

To make the network resulting from subtractive clustering more relevant, the clusters can

be post-processed by a conditioning algorithm. The conditioning algorithm sequentially

tests the clusters for each dimension. If the value of an adjacent membership function

evaluated at the current member centre point exceeds a threshold, then the functions are

merged to a new function at a location midway between the existing members. Typically,

a threshold of 0.5 keeps the functions distinct while maintaining the original clustering

pattern. Figure 3.11 shows the result of running the reduction algorithm on one of the

dimensions of a neuro-fuzzy network.

www.manaraa.com

CHAPTER 3: ALGORITHM DEVELOPMENT 80

Figure 3.11: Membership function complexity is reduced using grouping methods. In this
case, the original 32 membership functions generated during subtractive clustering (top)
can be reduced to only 2 (bottom) while still capturing the underlying data distribution.

www.manaraa.com

CHAPTER 3: ALGORITHM DEVELOPMENT 81

3.2.4 Formation of Fuzzy Rules

Using the subtractive clustering technique makes it easy to form appropriate rules. Each

time a cluster is identified, a rule is created for that cluster. As discussed in the previous

section, subtractive clustering creates a new membership function in each input

dimension for each cluster identified in the data. The rule for that cluster then has

antecedent parts consisting of the newly created membership functions.

Rules can also be formed through another technique which uses the training data. This

process requires that a structure has already been formed with membership functions for

the input dimensions. The input membership functions are then 'activated' by fuzzifying

the input data and observing which membership functions have the highest degree of

association. The strongest functions in each input dimension are then connected to the

antecedent side of the rule.

The consequent side of the rule is created by following a similar process but with the

output data and membership functions. If singleton values are being used as the outputs,

the singleton value is set to the target output value from the training data set.

This method of generating rules was adapted from the work by Wang et al. (2004). It is

particularly useful for re-forming rules when the clustering has already been completed,

for example, when optimizing the network as described in Section 3.4.

www.manaraa.com

CHAPTER 3: ALGORITHM DEVELOPMENT 82

3.3 Training the Neuro-Fuzzy Network

The training process is designed to manipulate the location of the membership functions

and the value of the rule outputs in order to minimize the classification error. The training

algorithm is given training data consisting of both good and bad data which is labelled by

assigning an output of zero or one to each data point. The training method used for this

project is the ANFIS method as implemented in MATLAB®. This method uses a

combination of traditional backpropagation and a least squares technique.

Because the training method is iterative, it requires multiple passes through the training

data. One pass through the training data is called an epoch. In order to find the best

solution, enough epochs must be performed to converge to the minimum point in the

error surface. However, if too many epochs are performed on the same data, then the

network will become over-trained on that particular dataset and perform poorly on new

data.

In order to avoid over-training, the training method is given two datasets. One is the

training dataset and is used to compute the required adjustments to the network. The

other set is the checking set and is used to evaluate the performance of the network after

each epoch. Typically, the training dataset is about 60 percent of the total dataset and 30

percent is used for checking. Since the checking dataset is used to evaluate the success of

the training process, it has some influence over the results. To observe the performance of

www.manaraa.com

CHAPTER 3: ALGORITHM DEVELOPMENT 83

the network on data it has never seen, the remaining 10 percent of the data is withheld for

testing purposes.

When the error of the network based on the checking set is reduced to a minimum value,

the network is getting over-trained, and training should be stopped. The ANFIS method

in MATLAB® automatically handles the checking procedure, but it still requires enough

epochs to be specified to find the minimum checking error. For this project, the number

of epochs was found experimentally by observing the error over the training process.

From error plots similar to Figure 3.12 it can be seen that after an initial period of

improvement, the error settles down to a steady-state value. For the data sets encountered

in this project, this point was always achieved within 500 epochs.

www.manaraa.com

CHAPTER 3: ALGORITHM DEVELOPMENT 84

Figure 3.12: Training of a neural network can proceed too far so that the network is too
specific to the training set. By holding some data back to use for checking, training can

be stopped when the network stops improving the checking result.

3.4 Optimizing the Neuro-Fuzzy Network

The training process proceeds by finding the minimum error possible with the given set

of feature attributes. However, in many cases, much of the data does not help in the

decision making process. By including irrelevant data in the training set, the network may

not achieve the same performance as with a smaller, more relevant dataset. In addition,

removing feature attributes from the problem reduces the processing required both in the

network and in the original feature extraction process.

www.manaraa.com

CHAPTER 3: ALGORITHM DEVELOPMENT 85

Feature selection is the process of deciding which feature attributes to include in a subset

in order to achieve the best performance (Kohavi and John, 1997). There are two main

approaches to the problem.

The first method analyzes the feature attributes and tries to make some statistical

determination of how important that feature attribute is to computing the correct

outcome. The main advantage of the method is that it only takes one iteration. However,

computing the relevance of the feature attribute without re-computing the network

parameters can lead to a false impression of the importance of a particular feature

attribute. In addition, feature attributes which are equally important may be removed as

they show up as redundant information (Levi and Ullman, 2006).

The second method is referred to as the wrapper method because the optimization

algorithm forms a 'wrapper' around the training algorithm. The principle is to change the

feature attributes included in the dataset, retrain the network, evaluate the performance,

and then decide on the feature attribute subset to try next. The process of optimization

then becomes one of searching for the minimum network error across the space of all

feature attribute combinations. This method is much more computationally intensive than

the statistics-based approach since there are potentially 2n – 1 combinations to try.

www.manaraa.com

CHAPTER 3: ALGORITHM DEVELOPMENT 86

An exhaustive search tries all of the possible combinations and is guaranteed to find the

minimum error. However, it also takes the longest amount of time. Other search

strategies can be used to reduce the amount of time taken for the search, but with the

possibility that they will not find the true minimum error or best feature attribute subset.

For this project, a forward search was used because of the simplicity of implementation.

A forward search starts with an empty set and first works through the set of all single

feature attributes. The best feature attribute is then selected and combinations of two

features are tried. This process continues until no further improvement is possible, or all

features are used. Because the best features are kept from the previous stage, there are

only n – s combinations to try at each stage (where s is the stage number and n is the

number of feature attributes) so the maximum number of iterations is n(n + 1)/2.

The forward search method was compared to the exhaustive search for one of the

example data sets. It was found that both methods were able to arrive at similar optimized

solutions. The exhaustive search found a better feature attribute set, but the improvement

in overall accuracy was only 0.5% above the solution found by the forward search. The

exhaustive search took 3472 iterations to reach the same solution as the forward search

found in 70 iterations.

www.manaraa.com

CHAPTER 3: ALGORITHM DEVELOPMENT 87

3.5 Rule Re-formation

Once the optimal set of feature attributes have been found, the network needs to be

updated for the new number of inputs. During the optimization process, unused inputs are

just suppressed but not actually removed from the network. For the final configuration,

however, only the needed feature attributes should be included so no unnecessary feature

extraction is performed.

All unused inputs to the network are first removed along with any membership functions.

At first, all rules were then removed and then re-formed using the data-driven rule

formation process discussed in Section 3.5. However, it was found that equally good

results could be achieved by simply modifying the existing rules.

First, antecedents referring to the unused input membership functions are removed. Then

all the rules are checked to make sure that no duplicate rules exist. Any redundant rules

are merged into one along with their associated output function or singleton.

3.6 Online Operation

A network that has been developed based on the data, optimized, and re-trained, is ready

for implementation into an on-line system. The on-line system evaluates which features

need to be extracted from the image and which feature attributes should be passed on to

the neuro-fuzzy network. These values are then processed by the neuro-fuzzy network in

www.manaraa.com

CHAPTER 3: ALGORITHM DEVELOPMENT 88

order to decide on a classification for the image (pass or fail). The classification decision

is made based on whether the output of the network is closest to one or closest to zero,

which were the training values for pass or fail respectively.

3.6.1 Confidence Evaluation

It would be tempting to base the confidence of the decision on how close the output was

to the limits. However, there are problems with this approach.

Recall that the output of the network is based on a weighted average of the singleton

outputs for each active rule. The weight of each singleton is based on the firing strength

of the associated rule. However, consider the case where two rules are firing – one with a

singleton output of one and the other with an output of zero. If the first rule is strongly

fired, and the second weakly, the output will be driven strongly towards a value of one.

Conversely, a weak first rule and strong second rule drives the output to zero. If the rules

are equally fired, then the output would be 0.5 and it would be valid to consider that the

decision is uncertain.

However, consider the case where both rules are very weakly activated. This means that

the condition is unusual and is not well covered by either rule. Since both weights are

small, it is easy for minor changes in either one to strongly affect the output and make it

appear that the decision is confident when in fact it is not.

www.manaraa.com

CHAPTER 3: ALGORITHM DEVELOPMENT 89

To get a better picture of the confidence of the decision, another measure is required. It

was decided that inputs that are far from any trained pattern should be considered low

confidence. Although the training set is not explicitly kept, the information from the

training processes is summarized by the membership functions. If no data was found in a

particular region of the input space, then no membership functions will cover that area

and/or no rules will have been formed to cover that situation. Therefore, it is possible to

determine how close a set of input data is to previously trained data by looking at the

firing strength of the rules. Thus, the confidence value reported during online operation is

the maximum rule firing strength in the network.

3.6.2 Detection of Unusual Data

Using the rule firing strength as the confidence value also allows a threshold to be set on

the minimum rule firing strength. If the rule strength is below the threshold then the

current input pattern can be considered significantly different than the trained pattern.

Being able to detect unusual patterns is very useful to the classification system because it

allows for a third type of decision to be made – uncertain. With traditional systems, the

image will be classified according to the existing rules even if those rules were developed

based on very different data. The neuro-fuzzy system allows the operator to know when

something has changed from the training data and so either the processes should be

checked or the network should be modified to deal with the new data.

www.manaraa.com

CHAPTER 3: ALGORITHM DEVELOPMENT 90

3.6.3 Network Modification

Modifying the network to deal with new data requires a balance of accommodating the

new data without destroying the network’s ability to correctly process the old data.

Note that this assumes that the old data is still relevant. If the process has changed

completely, then presumably the network would be re-formed from scratch with a new

example set. It also assumes that the correct classification for the new data is available

from the operator.

One method of retraining an existing network is to maintain a database of all of the

images that have been seen by the system so far. When new data is obtained, the

database, along with the new data examples, can be used to retrain the system. Because

there is a finite amount of memory/storage that can be used for such a process, it becomes

necessary to decide which criteria will be used to discard images from the set. Some

systems used a fixed buffer size such that only the last n images are kept. Other methods

use more complex criteria such as maintaining as diverse a population as possible within

the dataset.

In a neuro-fuzzy-based system it is possible to maintain some history without explicitly

retaining any images. As described in Section 3.6.1, a generalization of the training data

is stored in the input membership functions. Thus, retraining with new images then

www.manaraa.com

CHAPTER 3: ALGORITHM DEVELOPMENT 91

becomes a matter of defining how much the new data is allowed to modify the existing

network.

There are four types of network modification that are possible: limit modification,

changes to membership functions, addition of rules, and changes to the output singletons.

The last is not included in this work as it requires more complex processing to make sure

that old decisions are still valid.

Limit modification is the simplest change to make. Each dimension in the input space has

an associated set of limits that are a literal record of the range of values that were seen in

training. This ensures that data outside the training set is not processed. Often, the data

seen in the real images is just off one end or the other of the training data range. Small

modifications to the limits can be made safely to allow new data to be processed.

Changes to the membership functions are the most difficult to make without disturbing

the balance of the network. Changes to the membership functions are made based on the

antecedent part of the strongest firing rule. Since the rule firing strength is based on the

minimum degree of association of the membership functions in the antecedent part, it is

possible to determine which membership function is 'responsible' for a low rule firing

strength (see Figure 3.13).

www.manaraa.com

CHAPTER 3: ALGORITHM DEVELOPMENT 92

Figure 3.13: Assigning blame to a particular membership function is simply a matter of
determining the antecedent member with the lowest degree of association.

This membership function can then be adjusted so that for the current input, the degree-

of-association is sufficient to fire the rule above the minimum confidence threshold as

shown in Figure 3.14.

Figure 3.14: Updating of a membership function with new data is accomplished by
moving the function slightly so that the firing strength requirement is satisfied.

In the current design, membership function changes are only made if the original degree

of association is above a fixed limit. This ensures that the new point is not too far away

from the membership function that is being changed.

www.manaraa.com

CHAPTER 3: ALGORITHM DEVELOPMENT 93

Adding rules is the final modification that can be made. If the membership functions with

the highest degree of association to the current input are not part of the antecedent of a

rule, then a new rule can be formed. The new rule is created with a consequent value

equal either one or zero, depending on the classification entered by the operator.

In order to provide some level of protection against incorrect operator classification, the

strongest firing rule is first checked to see if the output singleton is closest to one or zero.

If the output of the strongest rule is in conflict with the classification submitted by the

operator, then a warning is issued to double check the decision.

3.7 Final Design

The final algorithm is compiled into a single software package given the name

“QVision”. Within the QVision system, there are three main modules as illustrated in

Figure 3.15.

www.manaraa.com

CHAPTER 3: ALGORITHM DEVELOPMENT 94

Figure 3.15: The three major modules that make up the QVision system

A configuration module allows the user to select feature extractors and define the area-of-

interest for each feature. Once all the feature extraction parameters are set, a training

module creates clusters based on the data, forms the neuro-fuzzy structure, and trains the

network using the training images. Optimization can also be performed in this module in

order to speed processing and possibly improve the performance of the classifier. The

final module is the online operation module where new images are classified. The

confidence of the decision is reported and if low confidence values occur, the operator

has the option of updating the network by providing the correct classification.

www.manaraa.com

CHAPTER 3: ALGORITHM DEVELOPMENT 95

Each part of the algorithm is written into a separate subroutine, so it is possible to

reconfigure the design of the system at a later time, improve the feature extraction

methods, or include a new classifier. Appendix A gives a summary of the methods that

were selected for each of the major algorithm components. Also listed are the MATLAB®

data structures and subroutines (m-files) developed for this project along with a brief

description and the calling syntax.

3.8 Summary

In this chapter, the rationale for using a software solution to AVI problems was

discussed. Software solutions allow smaller companies to be able to use AVI without

numerous iterations of hardware design. The need for good feature extraction systems

was recognized as a key factor for good algorithm performance and suitable extraction

algorithms were selected accordingly.

For the classification system, the details of implementing the neuro-fuzzy classifier using

the ANFIS system were presented along with the methods that will be used to create,

train, and re-train the neuro-fuzzy network. A summary of the ANFIS approach to the

problem is given in Killing et al. (2006).

Finally, all of these components were brought together into a unifying structure which,

together with a camera and lighting, forms a complete AVI system.

www.manaraa.com

 96

Chapter 4

User Interface

In this work, it was very important that the logic of the algorithm was intuitive for the

user. During implementation and operation, the user must be comfortable with the

process used to analyze the image, in order to trust the results.

The user interface was divided into three parts to correspond to the three modules of the

algorithm: configuration, training, and online operation. The configuration stage allows

the designer to indicate which features are relevant; the training stage develops the neuro-

fuzzy system that will be used for decision making; and the online operation module

makes decisions on a stream of real-time images based on the neuro-fuzzy output.

www.manaraa.com

CHAPTER 4: USER INTERFACE 97

A complete description of all of the functions available in the user interface is included in

Appendix B, the QVision User’s Guide.

4.1 Configuration Window

The configuration window shown in Figure 4.1 allows the user to define the problem.

Figure 4.1: The Configuration Window gives access to functions for setting up the
inspection problem and loading example images.

The first step is to load pass and fail images using File -> Open Pass/Fail Set. Pass and

fail images are loaded by selecting one directory of images for each. The directory will be

www.manaraa.com

CHAPTER 4: USER INTERFACE 98

scanned for all image files and an index will be created so the program can reference any

of the images in the directory later on.

Once the images are loaded, the user must decide on which features to use. Adding a

large number of features to the specification is permitted as they can be reduced later on

by the optimization process. A toolbar gives quick access to the four major feature types:

lines, circles, holes, and colour patches.

Defining a feature involves specifying the search region using numerical values in the

sidebar or by interactive selection. The extraction parameters (such as minimum and

maximum radius, colour type etc.) are then set. Each type of feature has different

specifications that must be set for proper extraction.

The feature attributes used for each feature can also be restricted by checking or un-

checking the appropriate boxes in the attributes section of the side bar.

As each feature is defined, the search region is shown on the current image along with the

extracted feature for the current image. The attributes section shows the attribute value

for the selected feature in the current window.

Once all of the desired features have been defined, a number of other tools provide

assistance in checking and/or improving the setup of the problem.

www.manaraa.com

CHAPTER 4: USER INTERFACE 99

4.1.1 Statistics Tool

The statistics tool (see Figure 4.2) displays a plot of the feature attribute values for all of

the images in the dataset. This is a good way to quickly identify images that may be

unusual or are not extracting the correct feature. It also gives some insight into the nature

of the data. Well segregated data may be able to be processed using a simple threshold

technique whereas overlapped data will need a neuro-fuzzy approach. Feature attributes

which show no clustering at all (such as Line A: T in Figure 4.2) are probably poor

indicators and perhaps an alternative feature should be used.

Figure 4.2: The Feature Statistics screen shows a plot of the feature attribute values
separated into pass (inverted triangles) and fail (upright triangles). A strong left/right

separation of the two data sets (for example the Line A: Score values) indicates a feature
attribute that differentiates well between pass and fail images.

www.manaraa.com

CHAPTER 4: USER INTERFACE 100

4.1.2 Tracking Tool

It is often difficult to decide how big the search region should be for a particular feature

in order to cover the variation in position of that feature through the entire image set. The

tracking tool automatically goes through the image set and attempts to determine the best

search window.

As shown in Figure 4.3, the algorithm operates by first using the SIFT method developed

by Lowe (2004) to locate reference keys in the current image. Likely matches are then

identified in the other images and a mapping is created for the search region. The new

search area is taken as the union of the original and the transformed region. Repeating

this process for all the images in the data set gives a search region that should encompass

all locations of the feature of interest. In order to avoid over-expanding the region, the

original image is checked at each step in order to ensure the same feature is still being

found.

www.manaraa.com

CHAPTER 4: USER INTERFACE 101

Figure 4.3: The Tracking tool first locates SIFT keypoints in the source image (a), then
locates matching keypoints in the second image and determines a mapping (b). The

search region is then transformed by the same mapping, and merged with the original
region (c). The final result is checked by extracting the feature from the original image.

4.2 Training Window

Training is the core of the algorithm, but requires the least input from the user. Once the

problem is defined in the configuration window, the problem definition and image sets

can be directly transferred to the training window. The training window (see Figure 4.4)

guides the user through the process of training the network.

www.manaraa.com

CHAPTER 4: USER INTERFACE 102

Figure 4.4: The training window gives access to tools for the development of the
classification system.

The feature values are first extracted for each image in the set using the Process ->

Extract Data menu option. The extracted data is again displayed so that the data

distribution can be verified.

www.manaraa.com

CHAPTER 4: USER INTERFACE 103

Process -> Divide Data Set is used to randomly sort the dataset and divide it into

training, checking, and testing datasets. The data can now be used to train the

classification method. After training is complete, the membership functions will be

shown and the final Root-Mean-Square (RMS) error reported. With the neuro-fuzzy

method, the network structure is also available by selecting the Fuzzy Inference System

(FIS) Structure tab (see Figure 4.5).

Figure 4.5: The FIS Structure part of the Training Screen shows the network connections
between inputs, membership functions, rules, and outputs.

www.manaraa.com

CHAPTER 4: USER INTERFACE 104

The structure that is formed directly after training is usually complex due to the high

number of feature attributes included in the classification process. Optimization reduces

the number of feature attributes and can also improve performance. Selecting Process ->

Optimize Solution begins the optimization process. The results of the optimization are

shown on the Optimizations tab, listed in order of decreasing RMS error. Selecting one of

the rows will reconfigure the network to use only those feature attributes indicated.

A lower RMS error does not necessarily mean better performance since the goal is to

correctly classify images with a high degree of confidence. The Testing tab shows the

performance visually with low confidence decisions circled (see Figure 4.6). The plot is

for the entire dataset (training, checking, and testing data) and relevant statistics are

displayed.

www.manaraa.com

CHAPTER 4: USER INTERFACE 105

Figure 4.6: The Testing tab of the Training Screen. The plotted points indicate the output
value from the classifier for each image. A value of 1 is a pass image and 0 is a fail

images. If the decision is uncertain, the point is circled to indicate an unusual image.

4.3 Real Time Operation

Once the network is developed and trained, the Camera window (see Figure 4.7) is the

screen that the operator would see on a daily basis. It shows the current image from the

camera, the features that are extracted, and the classification made by the network.

www.manaraa.com

CHAPTER 4: USER INTERFACE 106

Figure 4.7: The Camera window shows live images from the camera and the classifier
output for the current image. In this case the image has been identified as a Pass with a
confidence of 0.43. Stored images can also be loaded (right-hand column of images).

For each new image, the right-hand bar shows the FIS output, classification of the image,

and the confidence value (see Section 3.6.1 for details on how the confidence value is

calculated). If the confidence falls below a preset threshold, then the classification will

change to Uncertain, indicating that the network needs to be adjusted to handle the new

data. The threshold at which an image becomes uncertain was determined experimentally

in order to catch unusual images and could be adjusted to give more conservative results.

www.manaraa.com

CHAPTER 4: USER INTERFACE 107

Checking the Allow Retraining box will present the operator with a dialog box for images

with an uncertain classification. The operator can then manually classify the image and

the system will attempt to update the network to reflect the new information. If no

changes are possible, the operator will be notified to retrain using new example images.

For the purposes of off-line testing, image sets may also be loaded from disk and run as if

they were coming from the camera.

4.4 Summary

This chapter outlines the user interface which gives access to the features of the

algorithm. The interface consists of three main parts which are used for: set up of the

problem, development of the classification system, and online testing. The graphical

displays allow the user to interact with the system in an intuitive way. By using a

modular approach, changes can easily be made to the operation of the algorithm without

changing the way the user interacts with the software.

www.manaraa.com

 108

Chapter 5

Experimental Method

Testing of the neuro-fuzzy algorithm is based on a series of images captured from a test

cell in the Intelligent Automation Laboratory at Queen’s University, and two sets of

images from the Van Rob production facility. The neuro-fuzzy system is compared to a

threshold-based system. The purpose of these tests is primarily to investigate the

performance of the algorithm in processing data to arrive at the correct outcome.

5.1 Hardware Design

The real production environment has a number of factors that influence the image

captured by an AVI system. In automotive production lines where welding, grinding, and

other metalworking processes are common, there is more chance that lighting conditions

will vary, dust will accumulate on sensor and lights, and vibration will be transferred to

www.manaraa.com

CHAPTER 5. EXPERIMENTAL METHOD 109

the inspection area. In addition, shops with natural lighting (which are becoming more

common in an attempt to improve the employee environment (NREL, 2002) make it

difficult for AVI systems, since they work best under controlled lighting conditions.

In the image set from Van Rob, all of these factors are acting simultaneously on the

image. To test the algorithm in a more controlled environment, a test cell was constructed

which could replicate and isolate some of the conditions in the real inspection

environment. An additional smaller cell was also constructed for imaging smaller parts

and for demonstration purposes.

5.1.1 Overall design

The part that was available from Van Rob is quite large, measuring about 2m in length. It

was decided that making a test cell to fit the entire beam was not practical. Instead, the

beam was cut in half since the camera on the real system only sees a small portion of the

beam at a time.

The overall cell dimensions were set by the size of the part, the focal length of the

camera, the effective throw of the lights, and the space required for the lighting to diffuse

and not give localized hotspots on the part. Final dimensions are 1.2m in width, 1.5m in

length, and 0.9m in height. The cell frame is extruded aluminium with hardboard panels

providing the side walls. A sliding door at the front of the unit allows the operator to

access the camera, lighting, and part when needed, but to keep out ambient light when

www.manaraa.com

CHAPTER 5. EXPERIMENTAL METHOD 110

capturing images (see Figure 5.1). The top panel is translucent plastic so that external

lighting can be allowed into the cell. This can be blocked out by an opaque black cloth

when required.

Figure 5.1: The exterior of the laboratory test cell showing sliding door at the front.
Exterior lighting is visible above the top panel.

www.manaraa.com

CHAPTER 5. EXPERIMENTAL METHOD 111

5.1.2 Lighting

One of the biggest issues first identified by Van Rob was lighting. The original inspection

station at Van Rob had an open top. The overhead lighting in the factory was low

frequency which means that the flicker from the lighting was longer than the time to

capture one image frame in the camera. With an open top to the cell, the camera would

occasionally capture the dark portion of the flicker which would change the light levels

and interfere with the processing.

The cell was also located near a loading door. In the warmer months, the door was often

opened to allow fresh air into the building. However, this also influenced the ambient

light level in the inspection cell and again caused problems.

In order to replicate these effects, the laboratory test cell is constructed with a translucent

panel in the top (see Figure 5.2). Above the panel, there is a low frequency fluorescent

light to provide a flickering light source. Two tungsten-halogen lights are also mounted

by the fluorescent fixture and can be used to shift the colour of the incoming light to a

more red hue. The cell is located near a large outdoor window in the building which can

be used to allow sunlight into the cell. Tests with only interior lighting can also be

performed by covering the translucent panel with a black cloth that blocks exterior light

sources.

www.manaraa.com

CHAPTER 5. EXPERIMENTAL METHOD 112

Figure 5.2: Exterior lighting on the test cell consists of two incandescent halogen
sources, and one 4 foot fluorescent source.

The interior lighting consists of two of the most popular AVI lighting sources: high

frequency fluorescent and LED.

High frequency fluorescent lights run at several thousand Hertz which means that during

one image frame, the light level will change from light to dark many times. The sensor in

the camera will average out these flickers and the result is consistent light from frame to

frame. Fluorescent lighting provides good general lighting over a broad area. As shown

in Figure 5.3, two of these fixtures are located approximately 45 degrees from centre, to

www.manaraa.com

CHAPTER 5. EXPERIMENTAL METHOD 113

either side of the camera. The location of the fixtures is designed to reduce the amount of

direct glare from the flat surfaces of the parts.

Figure 5.3: Interior lighting in the test cell consists of two 2 foot long, high frequency
fluorescent lights, and one LED ring light mounted to the camera.

The LED fixture consists of an LED ring-light. The ring-light attaches directly to the

front of the camera lens and provides an even light directly from the viewpoint of the

camera. This direction of lighting often has problems when imaging flat metallic parts

due to direct reflections, but can sometimes provide helpful highlights and shadows. LED

www.manaraa.com

CHAPTER 5. EXPERIMENTAL METHOD 114

lights are driven by direct current and so do not flicker. They also tend to provide more a

more consistent spectrum of light over the life of the fixture (Zuech, 2003).

By using different combinations of lighting, the appearance of the image can be changed

quite drastically as shown in Figure 5.4. This is much larger than the range of lighting

that would be experienced in an actual inspection station.

Figure 5.4: Four examples of the range of lighting that is possible in the test cell.
Clockwise from top left: external incandescent, all internal lights, external fluorescent

and incandescent, LED.

www.manaraa.com

CHAPTER 5. EXPERIMENTAL METHOD 115

5.1.3 Camera

Although it was desirable to duplicate the Van Rob system as much as possible, the

selected camera is not the same camera. The main reason for this is that the system at

Van Rob uses a Cognex® In-Sight™ 5400C smart camera (see Appendix C for

specifications of all cameras used for this project). Smart cameras contain onboard

processing devices that run standard image processing algorithms. The user can set up the

camera to perform these processing steps on various parts of the picture and also

determine how the resulting information will be processed to make a decision about the

image. This is handy for industrial settings as there is no need for an external computer to

run the image processing software. However, it is challenging to work with this system

for research and development.

For the laboratory-based system, a colour camera was selected since the Cognex® camera

was also colour and colour information can often be useful to identification of parts

during inspection. A Basler® A312fc was selected as it gave similar performance to the

Cognex® camera in terms of resolution and speed but was able to connect to a PC using

an IEEE-1394 (FireWire) connection. The images are read into the MATLAB®

environment using the Image Acquisition Toolbox and the Carnegie Mellon University

IEEE1394 driver.

www.manaraa.com

CHAPTER 5. EXPERIMENTAL METHOD 116

For the smaller test cell, an imi tech IMC-1080FT camera was purchased. This camera is

slightly higher resolution than the Basler® camera, but is also FireWire based.

5.1.4 Background and Environment

The cross-car beam from Van Rob contains many holes and is a very open structure, so it

is possible to see through the beam to other parts of the cell and the factory itself. This

means there can be significant variation in the images due to the position of other

machinery. To simulate background motion in the laboratory test cell, a large space was

allowed behind the part and the back wall such that clutter objects could be added or

removed. The back wall itself is normally white but can be easily removed to change it

for a different surface.

Although dust build-up, smoke, and other particulate can be a fairly major influence on

the image quality over time, no attempt was made to specifically model these effects in

the laboratory test cell. It was decided that a system that is able to deal with changes in

lighting conditions, would also be able to handle any intensity changes due to gradual

dust build-up or environmental effects.

5.2 Test set

The laboratory-generated test images are views of a part of the cross-car beam under

investigation. The part consists of a single stamped bracket with one J-type clip as shown

in Figure 5.5.

www.manaraa.com

CHAPTER 5. EXPERIMENTAL METHOD 117

Figure 5.5: An example of one of the images used for training and testing the
classification system.

The image set represents the types of lighting, part, and environmental variations that

occur in the production environment. Variations in the images include exterior lighting,

small changes to the position of the part and clip, changes in the background position and

colour, and the addition of clutter objects. Interior illumination and the camera settings

(gain, white balance, shutter speed, and iris) are the same for all images.

A total of 50 pass and 50 fail images were generated for testing. The pass and fail images

have similar conditions, but in the fail images the clip is removed. The objective is to

determine if the clip is present.

www.manaraa.com

CHAPTER 5. EXPERIMENTAL METHOD 118

For a more realistic idea of the variation that can be expected in real images, the image

database from Van Rob provides over 3,000 images of the real part. Two databases are

available from two different periods in the system’s development (see Figure 5.6). The

first contains only a single view which is used to inspect two clips. The second set

contains three different views (“View 2”, “View 8”, and “View 9”) with multiple clips

per view. The older dataset is actually easier to classify as the intensity of the lighting in

the new set means much of the colour information is lost. A detailed description of the

datasets is given in Appendix D.

Figure 5.6: Sample of the images from the Van Rob image set. The first image is from
the early development of the system and has more colour information. The latter three

images are from the newer images and provide additional views.

www.manaraa.com

CHAPTER 5. EXPERIMENTAL METHOD 119

Both of the image sets from Van Rob are biased toward passed parts. This is because the

image sets were generated during production runs and so failed parts were only captured

at their natural rate of occurrence. For most tests of the algorithm, an equal number of

pass and fail images are selected from the overall dataset in order to provide balanced

training.

5.3 Testing of Feature Extractors

Although feature extraction methods are not the focus of this study, the custom feature

extractors need to be tested to ensure they produce reliable data. In addition, it is

desirable to confirm that feature-based methods help to reduce the influence of lighting

conditions on the extracted feature.

The initial tests of the feature extractors are based on a simple test pattern target which

includes linear edges and circles (see Figure 5.7). This target is placed in the test cell, and

used during the development of the feature extraction algorithms. As it is very simple, it

allows quick verification that the algorithm is operating correctly without the influence of

other factors.

www.manaraa.com

CHAPTER 5. EXPERIMENTAL METHOD 120

Figure 5.7: Testing target used for early development of the algorithm. Linear edges and
round circles allowed easy verification of the feature extraction results.

Such a simple target does not really test the robustness of the extractor under different

lighting conditions and lower contrast scenarios. Further tests focus on more realistic

images by using the real part in the test cell.

The real part contains several lines, circles, and colour regions. For the test, one of each

type of feature was selected as shown in Figure 5.8.

www.manaraa.com

CHAPTER 5. EXPERIMENTAL METHOD 121

Figure 5.8: The features used for testing with the laboratory-generated images.

By looking at how these features are extracted over a sample of input images, it is

possible to see that the correct object in the image is detected even though there are large

changes in overall lighting intensity and direction. For comparison, similar features were

defined in the commercial Cognex® Insight Explorer system. For the same sample of

images, the trend in output values are generally the same, but the Cognex® system is able

to return more stable values. This was expected as commercial image extraction systems

have been fine-tuned over many years to perform extraction as consistently as possible.

However, having less stable feature extractors means the classification system needs to

be better and so provides a more challenging test for the neuro-fuzzy system.

www.manaraa.com

CHAPTER 5. EXPERIMENTAL METHOD 122

5.4 Testing of Auto-Search method

The idea of the auto-search algorithm is for the user to be able to define a search region in

one image without worrying about where that feature might be positioned in subsequent

images. The auto-search algorithm attempts to locate the feature in the other images and

expands the search region accordingly. Successful search region expansion yields a

region that finds the desired feature in all images.

To test the auto-search algorithm, a line feature is used. Specifically, the left side of the

clip was selected. This edge is fairly difficult to track as it both moves laterally due to the

position of the part, and also rotates depending on how the clip was inserted. The initial

search region is defined using the first pass image (LPass001.bmp) as shown in Figure

5.9. The initial permitted angle range was the default of 0 ± 5 degrees. At the end of the

expansion process, the search region has been expanded to a larger area and has an angle

range of -4.9 ± 18.4 degrees.

www.manaraa.com

CHAPTER 5. EXPERIMENTAL METHOD 123

Figure 5.9: The original and automatically expanded regions for the line feature on the
edge of the J-clip.

The results of using the expanded region to extract lines are shown on three images in

Figure 5.10. The left image shows the correct extraction on an image similar to the

reference image. This shows that the algorithm is able to maintain the original intent. The

second image shows a rotated clip that would have been outside the original search

region, but is now correctly identified. In the third image, the feature is not correctly

identified because the expanded search region also includes part of the background which

has a strong enough edge to over-ride the true clip edge.

www.manaraa.com

CHAPTER 5. EXPERIMENTAL METHOD 124

Figure 5.10: Results from extracting features using the auto-expanded search region on
three images from the training set. In the left two images, the clip edge is correctly

identified, but in the right image, an edge the background causes incorrect extraction.

By manual adjusting the size of the search region so that it no longer includes the

background, all of the images can be processed correctly. Since this solution is not much

different from the parameters of the automatically expanded region, slight adjustments to

the auto-search method may solve the problem.

5.5 Development of Baseline System

For the testing of the neuro-fuzzy algorithm performance, it is necessary to provide a

baseline system for comparison. Since the neuro-fuzzy algorithm uses feature data

derived from custom feature extractors, it would not be consistent to directly compare it

to commercial systems.

www.manaraa.com

CHAPTER 5. EXPERIMENTAL METHOD 125

Most existing systems use some form of threshold-based decision making. That is, the

user is required to set hard limits for the allowable values of various feature attributes. If

there are multiple features or attributes, then the operator is also required to decide how

the information should be combined to arrive at a final decision.

In dimension checking applications, this process is relatively straight forward. Each

feature attribute must pass within the required tolerance. If any of the feature attributes

fail, the whole part fails. However, in assembly type inspection, each feature attribute is

used as evidence to support the overall decision of correctly or incorrectly assembled.

One of the other problems with threshold-based systems is a lack of a systematic method

for determining the threshold values. Usually it is up to the operator to decide on the

value to use. In this case, consistency is ensured by using an algorithm to set the

threshold values.

The threshold-setting algorithm looks for clusters of points in the training data. Two input

parameters determine how large the clusters must be before they are accepted, both in

number of points, and in range compared to the total span. The algorithm proceeds by

taking a single run through the data, collecting groups of adjacent pass or fail points.

Only those groups which are large enough (based on the input parameters) are stored as

regions.

www.manaraa.com

CHAPTER 5. EXPERIMENTAL METHOD 126

When region generation is complete, the regions are separated by threshold points. Each

feature attribute can have multiple thresholds if they are supported by the data. This is

slightly more advanced than most manually configured systems as typically only one

threshold will be used per feature attribute. The locations of the thresholds set by the

algorithm generally fit well with the locations selected by a human user. Some examples

are shown in Figure 5.11.

Figure 5.11: Two examples of the calculated threshold position in relation to histograms
of the pass (right) and fail (left) feature attribute data. The lower diagram shows a case
where the threshold can separate the data fairly well. However, in the upper diagram,

many images will be misclassified due to the overlap of the pass and fail data.

www.manaraa.com

CHAPTER 5. EXPERIMENTAL METHOD 127

To evaluate new data points, they are compared to the defined regions. If a data point

falls within a region designated as pass, it is assigned a classification of one, otherwise it

is given a classification of zero. As discussed above, in inspection of assembly, each

feature attribute can contribute to the overall decision. To achieve this effect, a novel

approach was developed whereby the outputs from each feature attribute are averaged to

produce a single output value. This makes the output a continuous variable between zero

and one with values closer to one indicating more evidence in the image for a pass

classification.

In a more advanced system, each attribute could also be given a different weight in the

average depending on its importance. However, this is outside the normal procedure in

traditional systems and starts to approximate some of the features of the neuro-fuzzy

system.

An optimization method is also implemented for the threshold system which is similar to

the neuro-fuzzy optimization process (see Section 3.4). Since the output of the threshold

classifier is the average of the outputs for each feature attribute, optimization is simply a

matter of determining the feature attributes that should contribute to the average to

achieve the lowest overall classification error. The average can be calculated very quickly

so an exhaustive search method is feasible.

www.manaraa.com

CHAPTER 5. EXPERIMENTAL METHOD 128

5.6 Testing Results and Discussion

5.6.1 Ease of Operation

Improvement of time it takes an operator to learn and set up the system was one of the

major goals of this project. However, this is difficult to quantify as it would require an

operator who was not experienced with any vision system to set up the QVision software

and a traditional commercial package. Even then, things learned about the images on the

first system would reduce the time required for the second system.

Therefore, explicit testing of the set up time was not done. What follows is an

examination of the steps required to configure the system and how these might increase

or reduce the total time required.

Although the threshold-based system described in the previous section provides a good

benchmark for accuracy performance tests, it is much more automated than traditional

systems and so does not give a good comparison for training time.

In both the QVision system, and with traditional methods, the user must define a set of

features that will be used for inspection. This is how the system is told what is important

to the inspection process. Since the QVision system uses a graphical interface to allow

the user to draw the search regions, this part of the process should take the same amount

of time as a commercial graphical system.

www.manaraa.com

CHAPTER 5. EXPERIMENTAL METHOD 129

Once the features are defined however, the QVision system allows the user to extract the

feature attribute data for all of the images in the training set in order to observe the range

and overlap of the data. This makes it much easier to find any outlier images. These are

images that have unusual conditions which cause features to be extracted improperly.

Perhaps what takes the longest time in setting up a traditional system is defining how the

feature attribute values will be combined to create the decision output. This is where the

example-based training is truly superior. By presenting images that contain the expected

variation in part appearance and position, the algorithm can determine the range of values

to allow or disallow. Through the optimization process, the algorithm also eliminates any

features that are not required for inspection.

Traditionally this is a trial-and-error process that can take weeks or months for the user to

reach the right combination. With the QVision system, the user can generate a result

within a few minutes. This result can then be evaluated and new features added if

performance is not satisfactory.

Small changes to the workflow can also make a big difference. The QVision system

allows the user to view the performance of the system on example images through an

intuitive plot showing performance on a number of indices. Traditionally, this had to be

done be looking at each image individually and seeing if the correct result was achieved.

www.manaraa.com

CHAPTER 5. EXPERIMENTAL METHOD 130

5.6.2 Performance Measures

Testing of performance is based on four indices. The RMS error is the root-mean-square

of the error between the classifier output and the desired classification as calculated by:

()

n

xc
ErrorRMS

n

i
ii∑

=

−
= 1

2

Where xi is the classifier output for each image, ci is corresponding correct classification

(zero or one), and n is the number of images (Mehrotra et al., 2000).

Number of false positives is the number of images with clips installed incorrectly which

are classified as passed. Number of false negatives is the number of images with clips

installed properly which are classified as faulty. Finally, the number of uncertain images

is the number of images where the classifier output is either weak (no fuzzy rules

satisfied strongly) or close to the decision threshold of 0.5.

5.6.3 Lighting Change Robustness

The first test for lighting change robustness uses the images generated from the

laboratory-based test cell. These are the simplest images in terms of clarity, resolution,

and lack of clutter. However, each image is taken under different lighting conditions and

the part and clip both move slightly.

www.manaraa.com

CHAPTER 5. EXPERIMENTAL METHOD 131

Three features are defined as shown in Figure 5.8 and repeated here as Figure 5.12. Both

the neuro-fuzzy and threshold-based methods were trained on the data from these

features.

Figure 5.12: Features and feature search parameters used for testing of robustness to
lighting change.

For these three features, there are a total of 11 feature attributes. Without optimization,

many of the feature attributes do not help in performing correct classification. However,

after training with all 11 attributes, a neuro-fuzzy network is created with 27 rules.

Optimization selects only two features as the most relevant: the Score of Line A, and the

Radius of Circle B. The resulting network is reduced to only 5 rules.

www.manaraa.com

CHAPTER 5. EXPERIMENTAL METHOD 132

Using a threshold-based classifier on the same data discards all but 4 feature attributes

during the grouping process (all other attributes are too evenly dispersed for the grouping

algorithm to define a threshold point). Optimization selects the Radius of Circle B as the

best feature attribute.

All four classifiers are run with a testing set consisting of 40 of the 100 input images.

This is higher than the typical ratio of 10 percent training data (outlined in Section 3.3)

because the total dataset size is quite small. The performance is shown in Table 5.1.

Table 5.1: Results of testing Neuro-Fuzzy and Threshold algorithms on images with
differences in lighting

Method RMS

Error
Number of
False Positives

Number of
False Negatives

Number of
Uncertain

Neuro-Fuzzy 0.1381 0 0 7
Neuro-Fuzzy Optimized 0.0635 0 0 0
Threshold 0.1723 0 0 3
Threshold Optimized 0.0000 0 0 0

In this case, both the Neuro-Fuzzy and Threshold classifiers are able to achieve perfect

classification on the testing data. The lower RMS error of the threshold-based system is

due to the fact that only two outputs are possible with one feature attribute selected (0 or

1) so if all the features are correctly classified, the error will be exactly zero. For the

www.manaraa.com

CHAPTER 5. EXPERIMENTAL METHOD 133

neuro-fuzzy method, the output is continuous so there is some scatter of the data about

the desired values of 0 and 1.

The one thing that these results hide is that the threshold system actually misclassifies

one of the images included in the checking dataset. If the original data plot is examined

for the feature used by the threshold method (see Figure 5.13), it is clear that there is no

exact division point between pass and fail. It just happens that the data point that is part

of the overlap was not included in the testing set. Since only one feature is being used by

the threshold classifier, the output for this one image switches all the way to the incorrect

value. If the confidence in the decision is being taken as the distance of the output from

0.5, then the decision would appear to be very confident.

Figure 5.13: Data plot for the feature attribute used by the threshold method. Although
the data is well segmented, the two centre points share the same value making perfect

separation by a threshold impossible.

By contrast, the neuro-fuzzy classifier is able to correctly classify the same image using

additional information from the Line A Score attribute. However, since it is a weaker

classification, the confidence is low and the image is marked as ‘uncertain’. Still, that is a

www.manaraa.com

CHAPTER 5. EXPERIMENTAL METHOD 134

better outcome than misclassifying the image with no indication that the results might be

wrong.

5.6.4 Real World Variation

The next test involves the dataset provided by Van Rob. These datasets give a more

realistic example of the kind of variation that can be expected in lighting and part

appearance. In addition, these images are fairly wide angle such that the clips are a

smaller part of the total image compared to the laboratory-generated images.

The clearest view of a clip in the set is taken from position ‘View 2’ and consists of a

push type clip which is inserted into a square hole in the part. It is very uncommon for

these types of clips to be only partially inserted as they would fall out if not fully inserted.

Therefore, the task is only to observe if the clip is present or not.

The database contained 45 images in which the clip was missing and 1597 images where

the clip was present. If the system was trained with a set containing this large disparity in

examples, it would be fairly poor at correctly classifying fail images due to the lack of

examples. Instead, 45 pass images were selected to provide a balanced set. For this task,

only two features are defined as shown in Figure 5.14.

www.manaraa.com

CHAPTER 5. EXPERIMENTAL METHOD 135

Figure 5.14: Features used for the inspection of a push clip in View 2.

Even with only two features, there are a total of eight feature attributes which can be

used. Somewhat surprisingly, there is actually more separation of the pass and fail data

for some of the attributes in this set as compared to the laboratory-based test done in the

previous section. This may be due to the more consistent lighting found in the real images

as compared to the fairly drastic changes which were artificially imposed on the

laboratory images. Because of the complete data segmentation on the Score attribute of

the Clip Hole, both classifiers selected that attribute during optimization and were able to

produce perfect classification as shown in Table 5.2.

www.manaraa.com

CHAPTER 5. EXPERIMENTAL METHOD 136

Table 5.2: Results on Testing Neuro-Fuzzy and Threshold Algorithms on classification of
‘View 2’ push clip images.

Method RMS

Error
Number of
False Positives

Number of
False Negatives

Number of
Uncertain

Neuro-Fuzzy 0.2595 1 0 12
Neuro-Fuzzy Optimized 0.0192 0 0 0
Threshold 0.2732 1 1 6
Threshold Optimized 0.0000 0 0 0

In this case, there is a distinctive break between the pass and fail data so both methods are

able to correctly classify all of the images in the data set. For this type of situation the

extra complexity of the neuro-fuzzy system may not be warranted. However, the use of

example-based training is still of benefit as it is able to detect the feature attribute that

will be the most reliable for classifying the images.

Though the initial results show that the neuro-fuzzy system is not required, it may still be

useful if the data starts to ‘drift’ due to lighting change or dirt build-up on the camera or

lights. In that case, the neuro-fuzzy system would output values closer to 0.5 as a warning

that things were changing. The threshold-based system, however, would fail suddenly

and without warning.

www.manaraa.com

CHAPTER 5. EXPERIMENTAL METHOD 137

5.6.5 Ability to deal with Poor Viewpoints

The push clip in View 2 is arguably the easiest of the clips to analyse. However, there is

another clip in View 2 which is much harder to correctly classify – the J-type clip in the

background. It is more challenging for several reasons. The first is that the lighting is

poor in that region of the beam because the part is further away and is angled away from

the camera. It is also a region where one of the other robots often enters the scene. Also,

the clip itself is inserted from the side of the part and needs to be captured in a stamped

hole. The part can fail if the clip is missing, but also if the tang of the clip does not

engage the hole properly. Occasionally, the beam itself will be bent which fails the part

regardless of the clip status.

For the first test, the only goal is to determine if the clip is present or not. Thus in all 52

fail images, the clip was missing completely. To match the fail images, 52 pass images

are selected. As this is a harder clip to identify, it is not immediately clear to the user

what features should be used. The view is actually of the back of the clip so there are few

geometrical features that are unique to the clip. In the end, four features provide the

algorithm with plenty of options during the optimization phase (see Figure 5.15).

www.manaraa.com

CHAPTER 5. EXPERIMENTAL METHOD 138

Figure 5.15: A close-up view of the features used for identification of the
J-Clip in View 2. Parts of a robot gripper are visible in the background.

Even given the difficulties described above, several of the feature attributes showed good

segregation of pass and fail data. The Score of the Stamped Hole feature was the best

with the pass and fail data completely separate. Again, both methods optimized to this

one feature. The results are shown in Table 5.3.

www.manaraa.com

CHAPTER 5. EXPERIMENTAL METHOD 139

Table 5.3: Results from identification of clip presence for the J-clip in View 2.

Method RMS
Error

Number of
False Positives

Number of
False Negatives

Number of
Uncertain

Neuro-Fuzzy 0.1683 2 0 8
Neuro-Fuzzy Optimized 0.0389 0 0 0
Threshold 0.3032 2 0 1
Threshold Optimized 0.0000 0 0 0

Again, the strength of the algorithm in finding the best feature attributes is displayed by

finding a highly segregated attribute that reliably distinguishes pass from fail.

It is a more challenging test if the clip is incorrectly inserted or if the beam itself is bent.

Nine images were located in the image set that contain this type of fault and were added

to the original fail set. Some examples are shown in Figure 5.16.

Figure 5.16: Close-up of the J-clip in View 2 showing the challenge in identifying faults
(brightness and contrast have been increased for clarity). The left clip is inserted

properly, the centre clip tang is not engaged, and the right image shows a bent beam.

www.manaraa.com

CHAPTER 5. EXPERIMENTAL METHOD 140

The same features are used from the earlier test, but looking the data distribution shows

that now none of the attributes show the nice segregation seen earlier (see Figure 5.17)

Figure 5.17: Plot of the pass (inverted triangles) and fail (upright triangles) data for the
first three attributes for J-clip inspection. The nine additional fail images (circled) make

the Hole-Score attribute no longer perfectly segregated.

With all attribute values highly overlapped, both methods struggle to extract enough data

to produce the correct classification. Through optimization, both methods select the X-

position of the Stamped Hole as the best feature. However, the neuro-fuzzy system is able

to improve the result slightly by also considering the Radius of the Stamped Hole feature.

The final performance of the methods is shown in Table 5.4.

www.manaraa.com

CHAPTER 5. EXPERIMENTAL METHOD 141

Table 5.4: Performance of the classifiers on inspection of the J-clip in View 2

Method RMS
Error

Number of
False Positives

Number of
False Negatives

Number of
Uncertain

Neuro-Fuzzy 0.2468 3 1 9
Neuro-Fuzzy Optimized 0.3024 1 3 1
Threshold 0.3170 2 1 0
Threshold Optimized 0.3464 2 4 0

Looking at which images are misclassified, the threshold-based classifier is only able to

correctly classify 2 of the 9 added images. The neuro-fuzzy system was able to correctly

classify 8 of the added images at the expense of misclassifying 3 of the original images.

However, the 3 images that are misclassified from the original set are all false negatives

(the preferable type of misclassification).

The poor performance of both methods on this dataset suggests that there is not enough

information in the feature attribute data in order to correctly classify all of the images.

The user could then take this information and attempt to add additional features to help

the classification process. If the situation of a bent beam was a common problem, it

would also help to provide more examples of this type of failure so they represent a

greater proportion of the total training set.

www.manaraa.com

CHAPTER 5. EXPERIMENTAL METHOD 142

5.6.6 Retraining of the Neuro-Fuzzy Network

The retraining process allows information from the operator to adjust the network

parameters when an image is classified as uncertain. The adjusted network is then used

for subsequent decisions.

Retraining should result in the image used for retraining to be correctly classified, and to

not impact the decisions on already correctly classified images. To test this, the set of

laboratory images is divided into two parts. The first part contains 88 images under

varying lighting conditions not including LED light alone. The second part contains 12

images taken under only LED lighting. This produces a much more blue tone to the

image. The network is initially trained using the first part of the dataset which results in

all images being classified properly and low RMS error of 0.0279.

After the network is trained, the second part of the dataset is classified using the network.

Since these images are different than the training images, it is expected that several will

be classed as ‘uncertain’. In fact, the network is robust enough to correctly classify 4 of

the 6 fail images, and 3 of the 6 pass images. The remaining images are classified as

uncertain. By manually classifying the uncertain images, the network parameters were

adjusted automatically to incorporate the new information. After retraining, all 12 images

in the second set are classified properly. Performance on the first dataset shows that all

images are still classified correctly and the RMS error remains unchanged.

www.manaraa.com

CHAPTER 5. EXPERIMENTAL METHOD 143

For comparison, if the threshold system is trained on the first dataset, it also produces no

misclassifications. However, when the second set is presented, 4 of the 6 fail images are

incorrectly passed.

Through experimentation with the number of features attributes used for the neuro-fuzzy

network, it can be determined that retraining works better when more attributes are

included. This is probably because there are more possibilities for adjusting the network

without affecting previous results. The use of additional attributes also means that it is

easier for the network to detect uncertain images in the first place.

5.7 Summary

This chapter starts by outlining the test apparatus that was constructed in a laboratory

setting in order to simulate some of the effects that were observed in industrial

environments. Once the basic algorithm performance was confirmed, more complex

images were used from Van Rob Stampings.

The tests showed that the algorithm excelled in locating the most relevant feature

attributes which is often a slow task for human operators. When the neuro-fuzzy system

was compared to a threshold-based system, the neuro-fuzzy system performed as well or

www.manaraa.com

CHAPTER 5. EXPERIMENTAL METHOD 144

better and was also able to recognize unusual conditions. A summary of the performance

of neuro-fuzzy versus threshold-based classifiers, including applications to other AVI

problems is given in Killing et al. (2007).

www.manaraa.com

 145

Chapter 6

Conclusions and Recommendations

6.1 Conclusions

6.1.1 Graphical User Interface

The graphical user interface described in Chapter 4 has proven to be very valuable both

in the development and testing of the algorithm, but also in demonstrating the software to

industrial partners. A graphical interface is considered essential to any automated visual

inspection system due to the visual nature of the data.

6.1.2 Neuro-Fuzzy System vs. Threshold-Based

The tests described in Chapter 5 show that the neuro-fuzzy system can help to improve

performance in situations where the input data is not well segmented. The threshold-

www.manaraa.com

CHAPTER 6. SUMMARY AND CONCLUSIONS 146

based system performs as well or better than the neuro-fuzzy system when the data is

more separated.

However, there are some other factors to consider when making the choice between the

two classifiers. The main one is the way that system degrades. Although the threshold

system performs well on the training data, it will not provide any indication that

conditions are changing in the input images. When the attribute values cross the

threshold, they will instantaneously change to the opposite and incorrect decision. The

use of multiple attributes will help as the output is an average of the attribute values and

they are not likely to all change at the same time.

Another factor to consider is the ability to retrain the system. The neuro-fuzzy system

provides a convenient structure to implicitly store information about the images used in

the training set. For a threshold-based system, a more explicit storage method would be

required in order to know how far the threshold can be adjusted without affecting

previous decisions.

The main advantage to the threshold-based system is that it is very simple. This means it

is easy to understand and also fast to compute. However, the neuro-fuzzy classifier

developed in this thesis was deliberately kept simple to satisfy those same criteria.

Therefore, it is not a ‘black box’ system. It is possible to inspect the network and

understand how it makes decisions.

www.manaraa.com

CHAPTER 6. SUMMARY AND CONCLUSIONS 147

6.1.3 Example-based learning

One of the most useful findings of this work is the advantage of using example-based

learning to train AVI systems. Example-based learning allows quick setup and

verification of the classifier without relying on the user to guess at the expected variation

in the images.

One potential issue is that it may be difficult to obtain a realistic set of example images if

the system is not already set up. However, in most cases, the camera system should be

able to be installed and run as a ‘dummy’ inspection station until the system is trained. If

human operators are present at another point in the line, then their inspection data can be

used to attach the correct classification to the training images.

Another possible source for images would be to set up a lab-based simulation of the real

environment. Images could be captured and the network trained to get a basic idea of

what features will be important. This would speed development once the real system is in

place.

Whichever method is used, the real advantage of using an automated training system is

that after a short period of time, a classification system will be developed and

performance on the training images will highlight any weaknesses. By providing this

information quickly, it removes the necessity for the user to try different combinations of

www.manaraa.com

CHAPTER 6. SUMMARY AND CONCLUSIONS 148

feature attributes and run through tests of various example images. The user is now free

to concentrate on the higher level issues such as what features might provide good

sources for information. This should speed the development process and reduce the

frustration felt during the training of current systems.

6.2 Recommendations

One of the biggest areas for potential improvement of the system as currently developed

is in the feature extractors. Many commercial and academic sources are available for

optimized feature extractors that will have higher performance than the custom ones

written for this project. More reliable feature extractors will make it easier for the

network to classify the data correctly.

The strong performance of the threshold-based system also suggests that this may be an

avenue for future development. However, as the threshold-based system becomes more

complex, it begins to resemble a simple neuro-fuzzy system, so there is a point when

more refining of the threshold-based system is no longer warranted.

One issue to consider in terms of industrial implementation is the user acceptance of a

neuro-fuzzy system. Although all attempts have been made to keep the system as simple

as possible, there still seems to be some fear of the neuro-fuzzy system. Further testing

and validation of the system on real production examples may provide enough confidence

www.manaraa.com

CHAPTER 6. SUMMARY AND CONCLUSIONS 149

that this is no longer an issue. A good starting point would be tests with more challenging

images than those in the existing databases. For example, images which contain more clip

positions, worse lighting, or are out of focus. Van Rob has indicated that this type of

image set could be made available to Queen’s University for further work.

Another possibility for industrial implementation is to first introduce the example-based

training into an existing AVI system. This would increase acceptance of the method and

still give many of the advantages of the neuro-fuzzy system (easy training, automatic

optimization of feature attributes, automatic threshold setting). Then, as the users become

comfortable with the logic behind the algorithm, a complete neuro-fuzzy system could be

implemented where conditions warrant its use.

Ultimately, the test of the system will be reliable performance on a real production line

for an extended period of time. That is something that is hard to simulate as the problems

that arise are often not issues that have been seen in the past. The performance of this

system in testing has shown strong potential to be able to solve some of the most

common issues in current implementation of AVI systems.

www.manaraa.com

 150

References
Basler Vision Technologies. (2007), “Area scan cameras”, Company Website,
http://www.baslerweb.com/beitraege/beitrag_en_17693.html

Brown & Sharpe. (2007), Company Website, http://www.brownandsharpe.com

Chen, B., and Hoberock, L.L. (1996), “Machine vision recognition of fuzzy objects using
a new fuzzy neural network”, Proceedings of the 1996 IEEE International Conference on
Robotics and Automation, April, pp.1596-1601

Chung, Y. K. and Kim, K. (2006), “Image processing based automatic inspection for
assembly line of automobiles”, Key Engineering Materials, Vol. 321-323 II, pp.1288-
1292.

Davies, E.R. (2005), Machine vision: theory, algorithms, practicalities, 3rd edition,
Morgan Kaufmann, New York, NY

Fiala, M. (2004), “ARTag Revision 1.A fiducial marker system using digital techniques”,
National Research Council, Technical Report #NRC-47419/ERB-1117, November

Finlayson, G.D., and Hordley, S.D. (2001a), “Color constancy at a pixel”, Journal of the
Optical Society of America, Vol. 18, No. 2, Februrary, pp. 253-264

Finlayson, G.D., and Schaefer, G. (2001b), “Solving for colour constancy using a
constrained dichromatic reflection model”, International Journal of Computer Vision,
Vol. 42, No. 3, pp. 127-144

Finlayson, G.D., Hordley, S.D., and Hubel, P.M. (2002), “Illuminant estimation for
object recognition”, COLOR Research and Application, Vol. 27, No. 4, August, pp.260-
270

Garcia, H. C., Villalobos, J. R., and Runger, G. C. (2006), “An automated feature
selection method for visual inspection systems”, IEEE Transactions on Automation
Science and Engineering, Vol. 3, No. 4, pp. 394-406

Gonzalez, R.C, Woods, R.E. and Eddins, S.L. (2004), Digital Image Processing Using
MATLAB, Prentice Hall, Saddle River, NJ

www.manaraa.com

 151

Ho, S-Y, Lee, K-C, Chen, S-S, and Ho, S-J. (2002), “Accurate modeling and prediction
of surface roughness by computer vision in turning operations using an adaptive neuro-
fuzzy inference system”, International Journal of Machine Tools & Manufacture, Vol.
42, pp. 1441-1446

Hunter, J. J., Graham, J. and Taylor, C. J. (1995), “User programmable visual
inspection”, Image and Vision Computing, Vol. 13, No.8, pp.623-628

imi Technology Co., Ltd. (2007), “HAN series”, Company Website,
http://www.imi-tech.com/han.html

Jang, R.J-S. (1993), “ANFIS: Adaptive-network-based fuzzy inference system”, IEEE
Transactions on Systems, Man, and Cybernetics, Vol. 23, No. 3, May/June, pp. 665-685

Kecman, V. (2001), Learning and Soft Computing, MIT Press, Cambridge,
Massachusetts

Killing, J., Surgenor, B.W., Norman, T. and Mechefske, C.K. (2006), “Flexible machine
vision-based parts inspection with neuro fuzzy systems”, Proc 16th International
Conference on Flexible Automation and Intelligent Manufacturing (FAIM), Limerick,
Ireland, June 26 to 28, pp. 439-446

Killing, J., Surgenor, B.W., and Mechefske, C.K. (2007), “Robust machine vision-based
parts inspection: intelligent neuro-fuzzy versus threshold-based classification”,
Proceedings of the 2007 International Manufacturing Science and Engineering
Conference, ASME Paper MSEC2007-31196, Atlanta, Georgia, USA, October 15-17

König, A., Genther, H., Glesner, M., Korn, A., Quint, F., Waleschkowski, N., Henrich,
W., Decker, M., and Schahn, M. (1993), “A generic dynamic inspection system for visual
object inspection and industrial quality control”, Proceedings of 1993 International Joint
Conference on Neural Networks, Vol. 2, October, pp. 1243-1246

Lee, K-J, and Bien, Z. (1997), “A model-based machine vision system using fuzzy
logic”, International Journal of Approximate Reasoning, Vol. 16, pp. 119-135

Levi, D. and Ullman, S. (2006), “Learning to classify by ongoing feature selection”,
Proceedings of the 3rd Canadian Conference on Computer and Robot Vision (CRV’06)

Lowe, D. G. (2004), “Distinctive image features from scale invariant keypoints”,
International Journal of Computer Vision, Vol. 60 No. 2, pp.91-110

Luko, S.N. (2000) “Zero defects, statistically considered”. SAE Technical Paper Series,
Paper 2000-01-2605

www.manaraa.com

 152

Marino, P., Siguenza, C.A., Pastoriza, V., Santamaria, M., and Martinez, E. (2001),
“Modelling vision inspection system for fuzzy logic”, Proceedings of The 27th Annual
Conference of the IEEE Industrial Electronics Society, pp. 387-392

Mehrotra, K., Mohan, C.K. and Ranka, S. (2000) Elements of Artifical Neural Networks,
MIT Press, Cambridge, Massachusetts

Nguyen T.H., and Walker, A.E. (2006), “A first course in fuzzy logic”, Chapman &
Hall/CRC, New York

Norman, T. (2005) “Clip detection using machine vision”, Queen’s University Technical
Report #QCL-05-02

Norman, T., Surgenor, B.W., Killing, J., Mechefske, C.K., Bone, G., Demirli, K., Sun,
Q., and Xi, F. (2006), “A neuro-fuzzy approach to a machine vision-based parts
inspection problem”, Proceedings of the SAE 2006 World Congress, SAE Paper
06CONG-40, Detroit, MI, USA, April 3 to 6

Novini, A. (1993), “Fundamentals of machine vision lighting”, WESCON’93 Conference
Record, September, pp. 44-52

NREL, “A literature review of the effects of natural light on building occupants”, NREL
Technical Report #550-30769, July

Peng, T. (2006) “Detect circular shapes in a grayscale image”, Matlab Algorithm,
Department of Mechanical Engineering, University of Maryland

Pfragner, M. (2004) “Fast implementation of circular Hough transform”, Matlab
Algorithm from the MatLab Exchange Forum

Pham, D.T. and Bayro-Corrochano, E.J. (1995), “Neural networks for classifying surface
defects on automotive valve stem seals”, International Journal of Machine Tools &
Manufacture, Vol. 35, No. 8, pp.1115-1124

Samhouri, M.S. (2005) “A neuro-fuzzy approach to the prediction and control of surface
roughness during grinding”, Doctor of Philosophy Thesis, Department of Mechanical
Engineering, Queen’s University, Kingston, Ontario, Canada

Shafi, A. (2004), “Machine vision in automotive manufacturing”, Sensor Review, Vol.
24, No. 4, pp.337-342

Sure Controls. (2007), “Machine vision products and tools (COGNEX)”, Company
Website, http://www.sure.ca/mv_technologies.htm

www.manaraa.com

 153

Tarabanis, K.A., Allen, P.K., and Tsai, R.Y. (1995), “A survey of sensor planning in
computer vision”, IEEE Transactions on Robotics and Automation, Vol. 11, No. 1,
February, pp. 86-104

The MathWorks, Inc. (2004), Image Processing Toolbox: User’s Guide, Version 5,
Massachusetts, USA, p.13-24

Thomas, A.W. (2006), “Software leads $3.4B spending”, Quality, December, pp.42-47

Wang, D, Chai, Q., and Geok, S.N. (2004), “MS-TSKfnn: novel Takagi-Sugeno-Kang
fuzzy neural network using ART like clustering”, Proceedings of 2004 IEEE
International Joint Conference on Neural Networks, Vol. 3, July, pp.2361-2366

Wilson, A., (2006) “3-D tracking ensures engine integrity”, Vision Systems Design, Vol.
11, No. 9, September

Yager, R.R., and Dimitar P.F. (1994), “Approximate clustering via the mountain
method”, IEEE Transactions on Systems, Man, and Cybernetics, Vol. 24, No. 8, August,
pp. 1279-1284

Zuech, N. (2003), “Machine vision and lighting”, Machine Vision Online, January,
http://www.machinevisiononline.org/public/articles/archivedetails.cfm?id=1430

www.manaraa.com

 154

Appendix A

Algorithm Components

A.1 Major Methods used by the Algorithm

The following is a summary of the methods selected for the various components of the
algorithm. The primary m-file is also given. Further information about each m-file can be
found in Section A.3. Routines that are not part of a built-in MATLAB® library are
indicated by ** if they are completely unique or * if they are third party algorithms.

Neuro-Fuzzy Classifier
Creation Subtractive clustering genfis2.m
Simplification Custom simplification method redSubFis.m**
Training Backpropagation + least

squares
anfis.m

Evaluation Neuro-fuzzy network
evaluation

evalfis.m

Optimization Forward search optimizeForward.m**
(Running the optimization routine will create the ‘neuro-fuzzy optimized’ classifier
instead of the ‘neuro-fuzzy’ classifier.)

www.manaraa.com

APPENDIX A: ALGORITHM COMPONENTS 155

Threshold Classifier
Creation Custom grouping method thresholdclusters.m**
Evaluation Average of outputs evalThres.m**

Optimization Exhaustive search optimizeThreshold.m**
(Running the optimization routine will create the ‘threshold optimized’ classifier instead
of the ‘threshold’ classifier.)

Feature Extraction
Lines Hough line detection based on

gradient image (Peng, 2004)
Hough_Grd_Mod4.m*

Circles Hough based using gradient
value and direction
(Peng, 2007)

CircularHough_Grd_Mod.m*

Holes Hough based using gradient
value only (Pfragner, 2004)

houghcircle2.m*

Colour Custom method using
reduced HSV colour space

SegHSV.m**

Squiggle Custom method based on
simple gradient methods
(part of QVision, but not fully
implemented)

Squiggle.m**

Tracking Tool
Key-point identification SIFT method sift.m*
Key-point matching Modified version of SIFT

match algorithm
transRegion.m*

Methods Investigated but not Used
Clustering Discrete incremental clustering, Grid clustering
Rule Formation Data driven rule generation
Edge Detection Canny operator, Fixed threshold
Line Extraction Gradient sum, Best-fit to gradient maximums, Binary based

Hough transform
Circle Extraction Circular unwrapping (warping)
Colour Extraction Segmentation based on RGB pixel values

www.manaraa.com

APPENDIX A: ALGORITHM COMPONENTS 156

A.2 Data Storage Structures

In order to maintain unified data storage between all of the subroutines, standard
structures were defined to hold common information. The overall structure is userData
and its contents are listed below along with the contents of selected substructures.

userData – Overall storage structure for all information related to a project. This is the
structure that is saved or loaded with the Project.

userData
 .cs information specific to the configuration window
 .tm information specific to the training window
 .rt information specific to the camera window
 .windows the handles of currently open windows
 .project name and location of the current project
 .imagesets location and size of the pass and fail image sets
 .dataMatrix matrix of all feature attribute values for all images
 .labels names of the feature attributes in dataMatrix
 .limits expected range of the attributes in dataMatrix
 .activeMethod currently selected classifier
 .Methods information specific to each classifier
 .defFeatures feature extraction information
 .defFixtures fixture definition information
 .defAttributes attribute output information
 .minConf limit for decision to be considered uncertain

.project – project location and identification

project
 .name english name
 .root full path location for the project root
 .file full path and file name of the project
 .jobfile full path and file name of any imported job files

.imagesets – example image data information (location and size)

imagesets
 .passthumb full path and name of the pass thumbnail images
 .failthumb full path and name of the fail thumbnail images
 .imgext file extension for the images (.bmp, .jpg, or .png)
 .passdir full path of the location of the pass images
 .faildir full path of the location of the fail images
 .testdir full path of the location of the testing images
 .numpass number of images in the passdir location
 .numfail number of images in the faildir location

www.manaraa.com

APPENDIX A: ALGORITHM COMPONENTS 157

 .numtest number of images in the testdir location

.Methods – Contains information about the classification methods. The content of each
subsection varies depending on the classifier.

Methods(activeMethod #)
 .name identifier for the method
 .fullStruct FIS for neuro-fuzzy, or thresArray for Threshold-based
 .activeStruct feduction of the fullStruct based on the optimization
 .optimization currently selected optimization

.defFeatures – Holds information about each feature in the current inspection. Parts of
the structure that are specific to a particular feature are indicated.

defFeatures(Feat #)
 .Type [feature type]
 .Descrip english description
 .Fix fixture number (0 for no fixture)
 .Polarity polarity of feature (0 for both, 1 for pos, -1 for neg)
 .cX X location of search area (Lines & Colours = corner,
 .cY Y location of search area Circles & Holes = centre)
 .Width Search box width
 .Height Search box height
 .AMin Minimum angle to search (Lines)
 .AMax Maximum angle to search (Lines)
 .Rin Inner circle search area radius (Circles)
 .Rout Outer circle search area radius (Circles)
 .RFind Radius of hole to search for (Holes)
 .Res Hue segmentation for color blob finding (Colours)
 .ColorID Color ID of blob to find (Colours)

.defFixtures – Contains information about the fixture definitions. Each fixture is based
on the nominal position of one or more features. These features must already be defined
in the section above. Features which are based on fixtures cannot be part of that same
fixture.

defFixtures(Fix #) -> .Feature(fIdx) -> .FNum (matches feature number)
 .Descrip .NomR (nominal roe)
 .NomT (nominal theta

.defAttributes (or defOutputs*) – A matrix that defines which attribute values are active.
Each row refers to a particular feature and each column to a feature attribute. The matrix
is always four columns wide.

www.manaraa.com

APPENDIX A: ALGORITHM COMPONENTS 158

defOuputs(feature #, dim #)
dim #s: 1 = X or Theta
 2 = Y or Roe
 3 = Radius for circles, n/a for lines, Color ID for colors
 4 = Score, Area for colors

*defOutputs was a term used in early development of the algorithm. The name was later
changed to defAttributes to better reflect what this truly represents. However, the old
name can still be found in some of the functions.

www.manaraa.com

APPENDIX A: ALGORITHM COMPONENTS 159

A.3 Subroutines (m-files)

A.3.1 AutoSearch Directory
Files in this directory are related to the process of automatically expanding search regions
by looking at the position of features in a series of images.

autoExpandRegion.m
Calling Syntax:
[Xexp, Yexp, Wexp, Hexp, A1exp, A2exp, resMatrix] =
autoExpandRegion(fType, imgList, Xnom, Ynom, Wnom, Hnom, A1nom, A2nom,
R1nom, R2nom);

Description:
Attempts to expand the boundaries of a search region by looking for matching SIFT keys
between images. FTYPE identifies the type of feature being sought. IMGLIST is a cell
array containing the file names of the images through which to search. The first image in
IMGLIST is assumed to be the reference image to which the boundary (XNOM, YNOM,
WNOM, HNOM, A1NOM, A2NOM) applies. The boundary parameters are those of a
standard feature search specification (x and y of the top left corner, width, height, and
minimum and maximum angle). R1NOM and R2NOM are used if circles are being
tracked. The algorithm will extract the specified feature from the search region in the first
image, then locate SIFT key-points near the search window. These will then be matched
to SIFT key-points in the other images, and the best-fit mapping found. The mapping is
applied to the original search window and then a bounding box formed around the
original and transformed regions to define the new search area.

The returned values are the expanded search region (XEXP, YEXP, WEXP, HEXP,
A1EXP, A2EXP), and the feature attributes of the feature extracted from each image
RESMATRIX.

sift.m
Calling Syntax:
[image, descriptors, locs] = sift(imageFile)

Description:
This is the SIFT key-point generation routine (written by Lowe). It handles transfer of
data to and from the siftWin32.exe which is where the processing takes place. This file
must reside in the same directory as the executable.

www.manaraa.com

APPENDIX A: ALGORITHM COMPONENTS 160

Takes the name of the image to process (IMAGEFILE), and returns a copy of the
IMAGE, a matrix of the local DESCRIPTORS for each key-point, and the locations
(LOCS) of those points in the image.

transRegion.m
Calling Syntax:
[TRMat, At] = transRegion(Xs, Ys, Ws, Hs, As, des1, locs1, file2)

Description:
Takes a search region (XS, YX, WS, HS, AS) and a list of SIFT key-point descriptions
(DES1) and locations (LOCS1) and attempts to locate matching points in the image
contained in FILE2. FILE2 must be the name of the file, not the image contents. Only
points that are near the search region are considered. Once a match is found, the
transformation between LOCS1 and the matching points in FILE2 is returned as a
transformation matrix (TRMAT). The change in angle between the two frames is also
returned as AT. Alternatively, AT can be derived from the elements in TRMAT.

A.3.2 Clustering Directory
Files in this directory are used to generate parts of the neuro-fuzzy network such as rules
and membership functions. Functions are also provided to reduce the network size.

formRulesSugeno.m
Calling Syntax:
[ffis, mfIdx] = formRulesSugeno(pfis, inData, outData)

Description:
This function takes a prototype fuzzy structure (PFIS), and a set of training data pairs
(INDATA, OUTDATA), and uses them to generate a new set of rules. The prototype
structure is used to obtain the membership function and inputs definitions. To form rules,
the input membership functions are activated using the INDATA points. The strongest
degree-of-associated members are made the antecedent of a new fuzzy rule unless an
existing rule has the same parameters. The output of the new rule is set to the value in
OUTDATA. The new rules replace any rules that existed in PFIS, and the structure is
returned as FFIS. Optional return MFIDX is a matrix of the antecedent parts of the new
rules.

optimizeDims.m
Calling Syntax:
[bestFeat, globalMin, bestLabels] = optimizeDims(inFis, trainMatrix,
checkMatrix, threshold, labels)

www.manaraa.com

APPENDIX A: ALGORITHM COMPONENTS 161

Description:
This is the function for performing an exhaustive search of all of the possible feature
attribute combinations to arrive at the best result. INFIS is the fuzzy structure which must
be fully complete. TRAINMATRIX contains training points in the first n columns and
matching output points in the last column. CHECKMATRIX is of a similar format, but is
data that will only be used for checking during ANFIS training. THRESHOLD is the
checking error at which optimization should stop. If THRESHOLD is set to zero,
optimization will continue until all combinations of attributes have been tried. The list of
best features is output to BESTFEAT, and the associated checking error as
GLOBALMIN. BESTLABELS is a subset of LABELS which contains a cell array of
only the names of inputs included in BESTFEAT.

optimizeForward.m
Calling Syntax:
[bestFeat, globalMin, bestLabels] = optimizeForward(inFis, trainMatrix,
checkMatrix, threshold, labels)

Description:
optimizeForward has the same calling syntax as optimizeDims. However, this function
does a forward search of possibilities instead of trying all possible combinations. This is
faster, but may miss the global minimum solution. For the forward search, feature
attributes are tried independently to determine the best attribute. After the best is selected,
the remaining attributes are added to the set one by one to find the best combination of
two features. This process continues until: THRESHOLD is reached by the checking
error, no further improvement is possible by adding more attributes, or all attributes have
been tried.

optimizeThreshold.m
Calling Syntax:
[bestFeat, globalMin, bestLabels] = optimizeThreshold(thresArray,
dataMatrix, labels)

Description:
This function is the last of the optimization set and performs optimization for threshold-
based classifiers. Because the process is much faster to evaluate, only the exhaustive
method is provided. THRESARRAY is a cell array of threshold values for each
dimension. The first element in each cell has to be a zero or one to represent the class of
the first region. For example, if THRESARRAY contains [1 3] for a particular
dimension, then a pass region will be defined on –INF to 3, a fail region for 3 to INF.

redSubFis.m
CallingSyntax:
[smallFis] = redSubFis(bigFis, mergeThres)

www.manaraa.com

APPENDIX A: ALGORITHM COMPONENTS 162

Description:
This function takes a FIS structure generated by subtractive clustering (genfis2) and
reduces the number of membership functions and rules by merging membership functions
with similar ranges and adjusting the rules accordingly. Rules which become identical
after this process are merged. BIGFIS is the input fuzzy structure which was generated by
genfis2. MERGETHRES is the threshold for which membership functions should be
combined. The threshold is evaluated based on the value of the nearest neighbour,
evaluated at the centre-point of the current function. The resulting fuzzy structure is
output as SMALLFIS.

reduceFIS.m
Calling Syntax:
[ffis] = reduceFIS(pfis, usedF)

Description:
Reducefis takes an input fuzzy structure (PFIS) and a vector of feature attributes
(USEDF) which should be kept. The remaining inputs of PFIS are eliminated along with
any membership functions, rules, and outputs that refer to those inputs. Rules which are
redundant after eliminating the unused inputs are merged. The final structure is returned
as FFIS.

reformFIS.m
Calling Syntax:
[bestFis] = reformFIS(inFis, trainMatrix, checkMatrix, usedF)

Description:
ReformFIS calls reduceFIS so it does all of the things mentioned under reduceFIS.
However, it also takes the reduced fuzzy structure and retrains it with the training data in
TRAINMATRIX and CHECKMATRIX. The reduced, trained structure is returned as
BESTFIS.

thresholdclusters.m
Calling Syntax:
[thresArray] = thresholdclusters(inputdata, minpoints, minsize)

Description:
This is the threshold equivalent of genfis2. It takes input of INPUTDATA, a matrix of
feature vectors with the last column containing a clustering indicator (in this case 0 for
fail and 1 for pass). Data is clustered by looking at each column of INPUTDATA and
finding continuous regions with the same classification which contain at least
MINPOINTS and have a span of MINSIZE × the range of that column. Once the regions

www.manaraa.com

APPENDIX A: ALGORITHM COMPONENTS 163

are identified, the boundaries are taken as the average between the locations of the
boundary points in each region.

These boundaries are returned as the cell array THRESARRAY. Each cell of
THRESARRAY contains an initial element which is the classification of the first region.
The following points are the locations of the boundary points. Classification is assumed
to switch across each boundary. Elements of THRESARRAY which are empty indicate
no threshold setting is possible for that dimension with the current settings.

A.3.3 Feature Extractors Directory
This directory contains functions related to finding features in the image. It also has some
functions for generating data sets from a series of images.

CircularHough_Grd_Mod.m
Calling Syntax:
[varargout] = CircularHough_Grd(img, radrange, varargin)

Description:
This is the method written by Peng (2006) for extraction of circles from greyscale images
using the gradient direction to reduce the complexity of the task. It has been modified
slightly for this project in order to only return the strongest circle in IMG and also to use
the built-in Matlab peak finding routine. IMG should be a greyscale image of only the
region-of-interest. RADRANGE is a two element vector containing the minimum and
maximum radii to search for. The remaining parameters are optional and modify the
internal settings of the algorithm. More details are available by typing: help
CircularHough_Grd.

The first output is the centre of the circle (x, and y), the second output is the detected
radius, and the last is the score of that circle. All outputs are optional, and reducing the
number of outputs will reduce the processing time.

ColorBlob.m
Calling Syntax:
[fVect, limits] = ColorBlob(srcImage, X, Y, Width, Height, Resolution,
ColorID)

Description:
ColorBlob is a wrapper for the colour feature extraction. It prepares the image before
passing it to the segHSV function. SRCIMAGE is the full size, colour image from the
camera or disk. X, Y, WIDTH, and HEIGHT define a box within the SRCIMAGE which
is the region-of-interest. Only this part of the image is passed to segHSV. RESOLUTION
defines how many segments will be used to divide the hue space. COLORID is the

www.manaraa.com

APPENDIX A: ALGORITHM COMPONENTS 164

segment number of the hue-of-interest. Setting COLORID to zero extracts the hue with
the largest area.

The return value FVECT is a four element vector which contains the elements [Centroid
X, Centroid Y, ColorID, and Area]. If COLORID was specified as zero, then the output
contains the ID of the hue with the largest Area. Otherwise, the return matches the input.
LIMITS is a 4 by 2 matrix containing the expected range of the values in FVECT. These
values can be used to scale the output to normalized values.

CreateTraining.m
Calling Syntax:
[ANFISMatrix, limits, labels] = CreateTraining(passFileList,
failFileList, defFeatures, defFixtures, defOutputs)

Description:
This is a high level function which creates a set of training data by extracting features
from a set of images. PASSFILELIST contains the full names of a series of images to be
used as examples of good parts. FAILFILELIST is the same but for bad parts. The
images must exist in the specified locations when this function is run. DEFFEATURES,
DEFFIXTURES, and DEFOUTPUTS contain the description of the features to be
extracted. They are defined as described in Section A.1

The output of the function is a matrix (ANFISMATRIX) which contains the feature
attribute values (columns) for all of the images (rows). The last column contains the
classification (one or zero) based on whether the image was in the pass or fail list.
LIMITS is the expected range of the values in each column, and LABELS is the name
associated with each column (this is generated from the user input name stored in
DEFFEATURES combined with the attribute name).

ExtractFeature.m
Calling Syntax:
[fVect, limits] = ExtractFeature(srcImage, fNum, defFeatures, fixDef)

Description:
This is the umbrella function for all of the feature extraction routines. It takes the full
colour SRCIMAGE, and DEFFEATURES structure, and fixDef (the DEFFIXTURES
structure) along with an index to DEFFEATURES which determines which features
should be extracted (FNUM). The function analyses the entry for the selected feature in
DEFFEATURES, selects the appropriate feature extractor, and passes the necessary
information to that extractor. The return value is FVECT and LIMITS which are direct
copies of the values returned by the feature extractors.

www.manaraa.com

APPENDIX A: ALGORITHM COMPONENTS 165

FeatureFileInput.m
Calling Syntax:
[defFeatures, defFixtures, defOutputs] = FeatureFileInput(fileName)

Description:
This is a series of three functions which handle input and output to the custom file format
used by QVision. Changes to the software have moved to a standard format where all
information is stored in a Matlab .mat file. However, the feature file input/output is still
useful for importing feature search definitions into the QVision environment.

FeatureFileMod.m
Calling Syntax:
FeatureFileMod(defOutputs, fileNameIn, fileNameOut)

Description:
Opens the feature file FILENAMEIN, and edits the attribute output portion of the file
using the definition in DEFOUTPUTS. The rest of the file is unchanged and the result is
stored into FILENAMEOUT. Use to block certain attributes for later processing.

FeatureFileOutput.m
Calling Syntax:
FeatureFileOutput(fileNameOut, defFeatures, defFixtures, defOutputs)

Description:
Writes a feature file to FILENAMEOUT using the information store in DEFFEATURES,
DEFFIXTURES, and DEFOUTPUTS.

FindFixture.m
Calling Syntax:
[fix, fMat, lMat] = FindFixture(srcImage, defFeatures, defFixtures,
fMat)

Description:
The function is used to locate fixtures in the image by first extracting the features in
DEFFEATURES that make up the fixture definition (as defined in DEFFIXTURES), and
then computing the average transformation between the nominal feature positions and the
ones found in the image SRCIMAGE. The formation of the transformation is based on
the type and number of features included in the fixture. FMAT contains the extracted
feature information (one row per feature). If any of the rows of FMAT are not empty, that
data is used for locating the fixture instead of having to re-extract the feature from the
image.

www.manaraa.com

APPENDIX A: ALGORITHM COMPONENTS 166

FIX is a three element vector with the transformation deltas in x, y, and theta. FMAT
contains the information from the extracted features, and LMAT contains the expected
range (limits) of the values in FMAT.

GetFeatures.m
Calling Syntax:
[featVect, limits, labels] = GetFeatures(srcImage, defFeatures,
defFixtures, defOutputs)

Description:
Extracts all of the features defined in DEFFEATURES from the SRCIMAGE. If fixtures
are needed, FindFixture is called with the information in DEFFIXTURES. Once the
features are extracted, the feature vectors from each feature are placed end to end to form
a row vector (FEATVECT). LIMITS and LABELS correspond to the expected range and
name of each of the entries in featVect respectively.

Hough_Grd_Mod4.m
Calling Syntax:
[varargout] = Hough_Grd_Mod4(img, varargin)

Description:
This function is a modification of the algorithm develop by Peng (2004) to create the
Hough space image. It has been modified to allow the use of a mask to eliminate
unwanted portions of the image (IMG). IMG must be a grayscale image of only the
region of interest. VARARGIN can be used to give the function a mask to block out
unwanted portions of the image. The mask must be a binary image the same size as IMG
with ones for pixels which are to be kept.

There are three optional outputs: the Hough space image, a vector of the angles
represented by each pixel in the horizontal direction, and a vector of the perpendicular
distances represented by each pixel in the vertical direction.

houghcircle2.m
Calling Syntax:
[Accumulator, xdim, ydim] = houghcircle2(Imbinary,r)

Description:
This is a method by Pfragner (2004) which create the Hough space image for circle
detection with a fixed radius. It is unmodified from the original. IMBINARY is an edge
image and R is the desired radius of circle to detect. The return is the Hough space image
ACCUMULATOR, and XDIM, YDIM are the dimensions of ACCUMULATOR.

www.manaraa.com

APPENDIX A: ALGORITHM COMPONENTS 167

HoughCircleDetectGrd.m
Calling Syntax:
[fVect, limits] = HoughCircleDetectGrd(srcImage, X, Y, Width, Height,
Rin, Rout)

Description:
This function is a wrapper method for the detection of circles using the
CircularHough_Grd_Mod algorithm. It takes the SRCIMAGE and extracts the portion
specified by the region of interest (X, Y, WIDTH, HEIGHT). This is passed to the Hough
method along with the specified radius ranges (RIN and ROUT). The returned values are
a vector of feature attribute values (FVECT) containing four elements: [centre X, centre
Y, radius, and score], and the expected range of those values contained in LIMITS.

HoughHoleDetect.m
Calling Syntax:
[fVect, limits] = HoughHoleDetect(srcImage, X, Y, Width, Height, Rfind,
Polarity)

Description:
This function is a wrapper method for the detection of holes using the houghcircle2
algorithm. It takes the SRCIMAGE and extracts the portion specified by the region of
interest (X, Y, WIDTH, HEIGHT). This is passed to the Hough method along with the
specified radius (RFIND). POLARITY is no longer used but remains for legacy purposes.
The returned values are a vector of feature attribute values (FVECT) containing four
elements: [centre X, centre Y, radius, and score], where the radius will always equal
RFIND. The expected range of the FVECT values is contained in LIMITS.

LineDetectHough.m
Calling Syntax:
[fVect, limits] = LineDetectHough(srcImage, X, Y, Width, Height,
AngleMin, AngleMax, Polarity)

Description:
This is the main line extraction algorithm. It takes the full image SRCIMAGE, applies the
region of interest (X, Y, WIDTH, HEIGHT, ANGLEMIN, ANGLEMAX), and uses the
Hough_Grd_Mod4 algorithm to generate the Hough space image. The feature attributes
of the line are returned in FVECT as four elements: [Angle, Perpendicular distance, 0,
and Score]. The extra zero is used to maintain the feature vector length at four elements.
POLARITY is no longer used but is kept for legacy purposes.

segHSV.m
Calling Syntax:
[colorMatrix] = segHSV(srcimage, numSect, colorIdx, numRtn, satThres,
minSize)

www.manaraa.com

APPENDIX A: ALGORITHM COMPONENTS 168

Description:
segHSV is used to extract colour information from the image. It takes SRCIMAGE, a full
colour image of only the region of interest and converts it to the HSV colour model. The
hue space is then divided into NUMSECT sections and pixels are grouped together into
like sections. The largest (by area) NUMRTN groups are returned for all of the sections
listed in COLORIDX. For instance calling with NUMSECT = 8, COLORIDX = [1,3],
and NUMRTN = 1 will return only the largest colour area in sectors 1 and 3 of the hue
space when the hue space is divided 8 ways. SATTHRES determines what is counted as a
colour based on the saturation value of the pixel.

COLORMATRIX is NUMRTN by 4 matrix of the properties of the colour regions. The
four columns are: [Centroid X, Centroid Y, Hue (0 to 360), Area]. If fewer than
NUMRTN areas are identified, the matrix will contain fewer than NUMRTN rows. If
NUMRTN = 0, then the properties of all identified regions will be returned.

Squiggle.m
Calling Syntax:
[fVect, limits, rtnImage] = Squiggle(srcImage, X, Y, Width, Height,
Segments, Polarity)

Description:
Squiggle is used to extract a ‘characteristic’ shape from the image. It takes the full image
SRCIMAGE and applies the region of interest (X, Y, WIDTH, HEIGHT). This region is
divided into SEGMENTS sections. SEGMENTS is a two element vector [XSEGMENTS,
YSEGMENTS]. POLARITY is also two elements and determines which direction of line
will be included in the calculations. The elements in POLARITY can have values of 0
(both polarities accepted), -1 or 1.

The returned data is FVECT which lists pairs of displacements of the lines from the edge
of the image, and the associated line score. FVECT is four elements wide but the centre
two elements are always zero. This is to comply with the standard 4 element size. Each
element of the SQUIGGLE will occupy one row of FVECT. SQUIGGLE is the only
feature extractor that returns non-standard feature vectors.

A.3.4 siftDemoV4 Directory
This directory primarily contains the original SIFT algorithms as developed by Lowe
(2004). These are: appendimages.m, match.m, showkeys.m, and sift.m. More information
about these functions can be found by typing help followed by the function name.

www.manaraa.com

APPENDIX A: ALGORITHM COMPONENTS 169

A.3.5 GUI Directory
This directory can be separated into two parts. M-files associated with the graphical user
interface, and m-files which are stand-alone subroutines. The files associated with the
user interface consist of .m/.fig pairs.

AutoSearchDialog.m/.fig The feature searching window
ClassifyDialog.m/.fig Question box for operator pass/fail decision
ConfigSystem.m/.fig The configuration window screen
DisplayStatsDialog.m/.fig The feature statistics window
FixtureEditing.m/.fig Window used to modify the fixture definitions
HomePage.m/.fig For future use (unified QVision start screen)
PlotMatrix.m/.fig Feature search results window
RealTime.m/.fig Camera window screen
SelectFisDialog.m/.fig Allows the user to load a fuzzy structure from disk
TrainingModule.m/.fig Training window screen

QVision.m Initializes Matlab and starts the QVision program

All of the above functions share the data structure userData as described in Section A.1
of this Appendix. The remainder of the functions in this directory are associated with
some aspect of the GUI but do not open windows of their own.

CMdisplayfeature.m, CMdisplayImg.m, CMpopulatepanel.m,
CMpopulatepopups.m
Calling Syntax:
CMdisplayfeature(handles), CMdisplayImg(handles),
CMpopulatepanel(handles), CMpopulatepopups(handles)

Description:
These are a family of functions that assist is running the Configuration screen. They do
not return any values and can only be called from the configuration window. HANDLES
is the Matlab structure containing the handles to the objects on the Configuration screen.
CMdisplayfeature extracts the current feature from the current image and shows the
results. CMdisplayImg reads the current image from disk and displays it in the main
window. CMpopulate panel formats and fills in the left side panel of the Configuration
window. CMpopulatepopups fills in the entries in the drop-down lists on the
Configuration screen

ProjectNew.m, ProjectOpen.m, ProjectSave.m, ProjectSaveAs.m
Calling Syntax:
ProjectNew, ProjectOpen, ProjectSave, ProjectSaveAs

www.manaraa.com

APPENDIX A: ALGORITHM COMPONENTS 170

Description:
These are another family of helper functions. In this case, any of the three QVision
windows can call these functions in order to Open, Save, or create a New project file. The
project file is shared between all windows. The data saved to the project file is a copy of
the userData structure (defined in Section A.2 of this Appendix). For the Save function,
the existing file name and path are taken from userData.project.file. If this entry is empty,
then the user is prompted for a file name and location. Open, New and SaveAs always
prompt the user for a file name and location. There no inputs or outputs as all data is
shared using the userData structure.

RefreshGUI.m
Calling Syntax:
RefreshGUI(guihandle)

Description:
RefreshGUI takes the handle of a currently open window (GUIHANDLE) and refreshes
the data in that window. The name property of the window must be recognized as one of
the three standard windows: 'QV - Configuration', 'QV - Training', or 'QV -
Camera'. The window is refreshed by deleting it and then reloading. This invokes the
window startup code which displays the current data in the window.

initBlankUD.m
Calling Syntax:
initBlankUD

Description:
This function has no inputs or outputs. It just initializes the userData structure so it has
all of the parts as listed in Section A.2. All three windows call this function on startup if
the userData structure doesn’t already exist. If it does exist, then the window will use the
existing data and not call this function.

ncolor.m
Calling Syntax:
[tricolor] = ncolor(colorID)

Description:
In order to unify the colour palette for all windows in the software, ncolor provides a
standard set of colours that can be accessed for plotting functions. The function is called
with the text name of the colour and the RGB triplet is returned. If the name is not
recognized, the colour black will be returned (0,0,0). Currently defined colours are:
'white', 'black', 'blue', 'red', 'green', 'purple', 'yellow', and
'grey'. Each colour (except white and black) can be modified by a preceding 'lt' or

www.manaraa.com

APPENDIX A: ALGORITHM COMPONENTS 171

'dk' for a light or dark tone of the same colour. Note that this function is not fully
implemented in all plotting functions so changing the values in ncolor may not change all
display colours.

A.3.6 OnlineAdapt Directory
This directory contains two functions which are used to perform neuro-fuzzy network
retraining functions.

ReTrainFis.m
Calling Syntax:
[modFIS, msgRtn, chkERR] = ReTrainFis(oldFIS, newFVect, newOutput,
scoreMin, chkData)

Description:
After the neuro-fuzzy network is trained, it can be retrained by incorporating new
information to adjust the network parameters. This function takes the current FIS
structure (OLDFIS), and attempts to incorporate the new data NEWFVECT, so that the
output matches NEWOUTPUT. SCOREMIN is the minimum confidence value required
so that the retrained network will not output in the uncertain region. CHKDATA can be
used if performance of the new network on specific data points is desired. CHKDATA is
a matrix of feature attribute values with the last column containing the correct
classification.

If the adjustment can be made, the new network is output as MODFIS and the rms error
on CHKDATA is output as CHKERR. If no adjustment can be made then MODFIS is
just a copy of OLDFIS. MSGRTN contains a text string which explains how the network
was modified (or why it was not).

getMFResponse.m
Calling Syntax:
[firedMF, strenMF] = getMFResponse(FIS, evalVect)

Description:
This function takes a FIS structure and a feature attribute vector EVALVECT that
matches the number of inputs in FIS. It calculates which membership function in each
input dimension has the highest degree of association with the data in EVALVECT.
FIREDMF contains the highest scoring membership functions, and STRENMF contains
the degrees of association for the membership functions in FIREDMF.

A.3.7 Utilities Directory
This directory contains functions that are not directly related to a particular category but
assist in some part of the process. They include plotting and display functions, camera

www.manaraa.com

APPENDIX A: ALGORITHM COMPONENTS 172

setup functions, and other smaller tools that were missing from the Matlab built-in
functions.

addOverlay.m
Calling Syntax:
addOverlay(fType, pVect)

Description:
This function adds a graphical display on top of the current image. FTYPE determines
the type of graphic to be shown and PVECT contains the data for plotting. A legend is
also created and maintained through multiple calls to the function. If the legend is deleted
externally, addOverlay will restart the legend on the next call. Allowed FTYPEs are
[BOUND] for drawing boundary regions, and [CIRCLE], [LINE], [HOLE], [COLOR],
[SQUIGX], [SQUIGY] for plotting feature extraction results. PVECT has different
meanings depending on the value of FTYPE but is typically an augmented version of the
feature vector.

appendFileName.m
Calling Syntax:
appendFileName(srcDir, addedend)

Description:
Appends the text string ADDEDEND to all of the image files contained in SRCDIR but
maintains the original extension. Original files are replaced by the newly named ones.
The file contents are transferred too so it can take a while for large directories.

BoundedBox.m
Calling Syntax:
[X1, Y1, X2, Y2] = BoundedBox(ThetaDeg, Roe, Height, Width)

Description:
BoundedBox intersects the line defined by THETADEG (angle), and ROE (perpendicular
distance to origin) with the box (HEIGHT, WIDTH). It is assumed that the box starts at
the origin. (X1, Y1) and (X2, Y2) are the intersection points.

BoundedBoxFancy.m
Calling Syntax:
[X1, Y1, X2, Y2] = BoundedBoxFancy(ThetaDeg, Roe, X, Y, Width, Height,
Angle)

www.manaraa.com

APPENDIX A: ALGORITHM COMPONENTS 173

Description:
This is a more advanced version of BoundedBox which allows the box (X, Y, WIDTH,
HEIGHT, ANGLE) to be angled and to have an arbitrary origin. Intersection points are
returned as (X1, Y1, X2, Y2).

CheckHit.m
Calling Syntax:
[locX, locY] = CheckHit(hObject, checkPnt)

Description:
This function is called by one of the graphical user interfaces. It looks at the boundaries
of the object referenced by HOBJECT and determines if CHECKPNT is within those
boundaries. If it is, LOCX and LOCY are the coordinates of CHECKPNT relative to the
origin of HOBJECT. If the point is outside the object boundaries, LOCX and LOCY will
be empty. This function is useful in determining when the user cursor is over objects on
the screen.

classDir.m
Calling Syntax:
classDir(srcDir)

Description:
This is a useful function for classifying a set of unclassified training images. All of the
images in SRCDIR are displayed, one at a time and the user is asked to provide the
correct classification. A copy of the classified images is stored in a directory with the
name “Class_” followed by the user defined name of the class. If this function is run on a
directory that already has directories with that name format, these are suggested as
possible class names. The user also has the option to start somewhere in the middle of the
set. An undo button allows the user to go back once if a mistake is made.

clip.m
Calling Syntax:
[clipped] = clip(data, limit1, limit2)

Description:
This function restricts the value of DATA to lie between LIMIT1 and LIMIT2. The
restricted value is returned as CLIPPED. The order of LIMIT1 and LIMIT2 does not
matter.

CloseCamera.m
Calling Syntax:
CloseCamera(vid)

www.manaraa.com

APPENDIX A: ALGORITHM COMPONENTS 174

Description:
Takes the VID structure associated with an open camera and closes the camera. The VID
structure is also deleted.

ConfigureCamera.m
Calling Syntax:
ConfigureCamera

Description:
This is not a function. It acts directly in the current environment. Because it operates in
Matlab cell mode, parts of it can be run separately. The main purpose of the m-file is to
be able to play with the camera settings to get them adjusted for a particular hardware
setup. To adjust the values, they must be changed in the code itself.

The last section is a semi-automatic white balance adjustment. Run this segment when
the camera is facing a white surface and the iris and gain have been adjusted so that the
white surface appears grey (no values are saturated). The routine will then try to adjust
the white balance parameters until the red, green, and blue are equal.

Values from this process must be transferred manually into the OpenCamera function.

evalfisRMS.m
Calling Syntax:
[RMSErr, MisClass] = evalfisRMS(DataMatrix, FIS)

Description:
Evaluates the output of the FIS structure for the values in DATAMATRIX, compares
them to the ideal output (last column of DATAMATRIX), and returns the rms error
(RMSERR). MISCLASS contains the indices of the rows in DATAMATRIX that were
more than 0.5 away from the correct classification.

evalthres.m
Calling Syntax:
[passfail, voted, output] = evalthres(fVect, thresArray)

Description:
This is the equivalent of evalfis for the threshold-based method. FVECT is the vector or
matrix of points to evaluate. THRESARRAY is the definition of the threshold transition
points.

PASSFAIL is a vector of zeros and ones indicating the results for each row in FVECT.
The output is pass if and only if all of the feature attributes fall into a pass region.
VOTED is also the output for each row in FVECT but is the average output for all of the

www.manaraa.com

APPENDIX A: ALGORITHM COMPONENTS 175

attributes. OUTPUT is a matrix of values that gives the output for each individual
attribute.

fixdec.m
Calling Syntax:
[rndnumber] = fixdec (number, decplaces)

Description:
Returns RNDNUMBER, a NUMBER rounded to the specified number of decimals
(DECPLACES).

GenerateImageSet.m
Calling Syntax:
[]=GenerateImageSet(baseFileName, varargin)

Description:
This function assists in capturing a series of images from the camera for use in training.
BASEFILENAME will be used as the first part of all file names. The remainder will be a
three digit number starting from “000”. Images are always saved in bitmap format
(.bmp). The camera is automatically opened, and a preview of each image is shown.
Image are saved to the current directory and overwrite will occur automatically if the
same file names already exist in that directory. The number of images to acquire can be
entered as VARARGIN, or the user will be prompted on start-up.

GetCameraImage.m
Calling Syntax:
[rtnImage] = GetCameraImage(vid)

Description:
Captures an image from the camera referenced by VID and returns it as RTNIMAGE.

getFisLimits.m
Calling Syntax:
[limits] = getFisLimits(FIS)

Description:
Reports the upper and lower bounds of each input dimension in FIS and returns as a
matrix of values LIMITS.

intersectLines.m
Calling Syntax:
[X, Y] = intersectLines(Th1, R1, Th2, R2)

www.manaraa.com

APPENDIX A: ALGORITHM COMPONENTS 176

Description:
Finds the intersection point (X,Y) between two lines (TH1, R1) and (TH2, R2) defined
using the angle/distance from the origin method. If no intersection is found X and Y are
NAN.

intline.m
Calling Syntax:
[x,y] = intline(x1, x2, y1, y2)

Description:
This function was copied from the text by Gonzalez et. al. (2004) and produces two
vectors of coordinates which are the integer coordinates of all of the points between (X1,
Y1) and (X2, Y2). Used for mapping a line segment onto pixels.

makerotmat.m
Calling Syntax:
[rotmat] = makerotmat(Angle)

Description:
Makes a rotation matrix (ROTMAT) based on the specified ANGLE.

OpenCamera.m
Calling Syntax:
[vid] = OpenCamera

Description:
Opens any connected DCAM compliant camera which matches the names of either the
Basler or imi tech camera. The camera must be configured to work with Matlab first. To
check operation, type “imaqhwinfo('dcam')”. The DeviceInfo field should be of size
1x1 if the camera is connected and working properly. The output VID is used to identify
the camera for later functions.

overlayImages.m
Calling Syntax:
compositeimg = overlayImages(baseimg, overlayimg)

Description:
Show the edge image of OVERLAYIMG as a red outline overtop of BASEIMG. The
composite image is returned as COMPOSITEIMG. This function is used when aligning
the camera image with a saved image.

www.manaraa.com

APPENDIX A: ALGORITHM COMPONENTS 177

plotColorWheel.m
Calling Syntax:
plotColorWheel(axishandle, segments, selection)

Description:
Plots a mini colour wheel to AXISHANDLE with SEGMENTS number of segments
evenly spaced in the hue range. If SELECTION is greater than zero, the SELECTION#
of SEGMENT is highlighted.

plotcube.m
Calling Syntax:
plotcube(srcimage, n)

Description:
Plots the colours in SRCIMAGE in a 3d cube with axis of red, green, and blue
components. This function can be used to look at the colour distribution in an image.

plotDataOverMembers.m
Calling Syntax:
plotDataOverMembers(varargin)

Description:
This function plots the data values from DATAMATRIX over the membership function
display so there is some reference for the membership function locations. Type: help
plotDataOverMembers for usage.

plotDMat.m
Calling Syntax:
[varargout] = plotDMat(varargin)

Description:
This function plots the data values from DATAMATRIX with pass and fail data
separated. Outputs a handle to the axes used for plotting. Type: help plotDMat for
usage.

plotMembers.m
Calling Syntax:
plotMembers(varargin)

Description:
This function plots the membership functions for a particular input dimension of the
supplied FIS structure. Type: help plotMembers for usage.

www.manaraa.com

APPENDIX A: ALGORITHM COMPONENTS 178

plotOptimize.m
Calling Syntax:
[varargout] = plotOptimize(varargin)

Description:
This function plots the results of the optimization runs with the current run highlighted.
Outputs a handle to the axes used for plotting. Type: help plotOptimize for usage.

plotStructure.m
Calling Syntax:
plotStructure(varargin)

Description:
This function plots neuro-fuzzy structure for ANFIS-based FIS structures only. Type:
help plotStructure for usage.

plotTestResults.m
Calling Syntax:
[FPMat, FNMat] = plotTestResults(varargin)

Description:
This function plots the test results and calculates the statistics for the neuro-fuzzy
classifier. Outputs are the indices of the false positives (FPMAT) and false negatives
(FNMAT). These are also listed in the main window when the function is run. Type:
help plotTestResults for usage.

plotTestResultsThreshold.m
Calling Syntax:
[FPMat, FNMat] = plotTestResultsThreshold(varargin)

Description:
This function plots the test results and calculates the statistics for the threshold classifier.
Outputs are the indices of the false positives (FPMAT) and false negatives (FNMAT).
These are also listed in the main window when the function is run. Type: help
plotTestResultsThreshold for usage.

setFisLimits.m
Calling Syntax:
[modFIS] = setFisLimits(FIS, limits)

Description:
This function sets the input dimension limits of the FIS structure to the values in LIMITS.
The updated structure is returned as MODFIS.

www.manaraa.com

 179

Appendix B

QVision User’s Guide

B.1 Introduction

QVision is a machine vision inspection system designed to provide the user with
access to neuro-fuzzy algorithms. These so-called ‘soft computing’ methods
attempt to mimic a more human inspection method that can accommodate
changes in lighting, part orientation, and appearance in order to focus on the
important requirements.

Training is accomplished with a simple process whereby examples of good and
bad parts are presented to the system. The neuro-fuzzy algorithm then determines
which features of the images are important, and how to use that information to
correctly classify the images. One of the major advantages of this system is the
ability to use multiple images to train the inspection system. This gives a much
better idea of the range of values expected in actual operation and can reduce
retraining time later.

At the moment, this software is intended for demonstration purposes and
represents experimental work. It is not yet intended for production use.

www.manaraa.com

APPENDIX B: QVISION USER’S GUIDE 180

B.1.1 Installation
The algorithm requires Matlab® R2007b or later to be installed on the host
system. The software is not compiled and requires the compiler in Matlab® to run.
The installation needs to have rights to the Fuzzy Toolbox, Image Acquisition
Toolbox, and Image Processing Toolbox.

Seting up the environment

1 Install the drivers for the IMI camera (see document “Installing the imi-tech
camera with Matlab”)

2 Copy all of the files and directories to a convenient location on the hard drive.

3 Open the Matlab® program and choose Set Path from the File menu.

4 Choose Add with Subdirectories and navigate to the directory into which you
copied the algorithm files. This associates the directory so Matlab® can find
the subroutines.

Note The algorithm can technically operate with any dcam compliant IEEE-
1394 (Firewire) or USB camera. However, manual modifications are
required to the code in order to operate properly with any camera other
than the imi tech IMC1080FT or Basler 312fc models.

Startup
To run the algorithm, type QVision at the Matlab® command prompt. This will
open the first window (the configuration window).

www.manaraa.com

APPENDIX B: QVISION USER’S GUIDE 181

B.2 Inspection Example

The following is a quick introduction to the software’s capabilities as illustrated
through the example files provided. A more detailed description of each part of
the program is found in the next section.

1 Run Matlab®, and start the algorithm by typing QVision to start the program
and the Configuration Window should appear.

Note The live link to the camera is not established until the Camera window is
opened in Step 14.

2 From the File menu, select Open Project. Navigate to the Examples directory
and select DemoStart.mat and then click on Open to load this project file. The
project file contains information about the feature definitions and the location
of the pass and fail directories.

3 After reading in the pass and fail images, the program will create a set of
thumbnails and display these in the side bar. When finished, the centre panel
of the Configuration window should show the first fail image.

4 For this example, no changes will be made to the features so proceed directly
to the Training Window by selecting the Window menu and choosing
Training. All of the data from the configuration window is automatically
transferred to the training window.

5 From the Process menu, select Extract Data to process the images. A bar will
show the progress of the data extraction process for the pass and fail image
sets (depending on the computer speed, this may take some time). When
complete, click OK in response to the “Feature extraction complete” message.

6 From the Process menu select Divide Data Set. Accept the default values by
clicking OK.

7 From the Process menu, select Train Method to begin training. A series of
messages and a status bar will appear during the training process. Click OK
when the checking error is displayed. A plot of the data should be shown in
the main window.

8 Click on the FIS Structure tab to see the network. Click on the Member FNs
tab to return to see the membership functions formed during training. Click on
the Feature Data tab to see the data distribution again.

www.manaraa.com

APPENDIX B: QVISION USER’S GUIDE 182

9 From the Process menu, select Optimize Solution. Click OK to accept the
default “Error tolerance” of 0.0. A bar will appear indicating the progress of
the optimization process. Click OK in response to the “x features were used to
reach error of y” message.

10 Click on the Testing tab to see the results with full FIS structure. The RMS
error for this example is typically on the order of 0.1, with 1 or 2 false
positives or negatives.

Note The exact error and number of false negatives/positives may vary when
this example is run. This is due to a randomization that occurs during the
Divide Data Set process in Step 6 (see Section B.4.3 for details)

11 Click on Optimizations tab and select the second row (Run Number 2). After
the network updates, click OK in response to the “FIS structure updated”
message. Click on FIS Structure tab to see the simplified FIS structure.

12 Click on Testing tab to compare the results with the simplified FIS structure
to the previous values found in Step 10. Performance may improve or
degrade, but network has been simplified.

13 The network is now ready to be used to classify new image. From the Window
menu, select Camera and the Camera should appear.

14 Click on the Open Camera button to open the link and a camera image should
appear.

Note See section B.5.7 for instructions on testing the network with saved
images if no camera or test setup is available.

15 Check Enable Processing and Display Graphics. Feature icons should appear
on the image together with a “pass” or “fail” decision, FIS Output and
Confidence numbers in the left-hand panel.

16 Click Single Image to refresh the image and get a new decision.

17 Click on Online, to get continuous stream of images and decisions (updates
about every 1 sec depending upon computer), then select Offline when
finished.

www.manaraa.com

APPENDIX B: QVISION USER’S GUIDE 183

B.3 Configuration Window

The configuration window is used to set up the inspection problem by defining
features and loading the example images.

B.3.1 File Menu

New Project...
Creates a blank project file and clears the data from the current screen. A prompt
will appear requesting a location for the new project file. This action will erase all
unsaved data in any of the windows.

Note A single project file is used for all data displayed by the three windows
(configuration, training, and camera). Saving, opening, or creating new
project files affects all three windows even if they are not currently open.

Open Project...
Opens a saved project file. The project files use the standard .mat Matlab® format
and extension. Opening a project file erases all unsaved information in any of the
windows.

Save Project
Saves the current project file (if it exists). No prompt is given and overwrite
permission is assumed. If the project has not yet been saved, a dialog opens
requesting a save location.

Save Project As...
Resaves the project file under a new name. This is useful for saving stages of a
project in case you later want to revert to an older instance.

Open Pass Set… and Open Fail Set…
Used to select the directory locations for the pass and fail images. The selected
directory is scanned to determine the predominate type of image file present and
then these images are loaded (.bmp, .png, and .jpg are acceptable file types).

Note While it is possible to have other non-image files in the same directory as
the pass or fail images, this is not recommended.

The algorithm will create a thumbnail image during import which will be saved
for later quick access. The thumbnail file is always called thumbnails.jpeg
and is saved back to the same directory.

www.manaraa.com

APPENDIX B: QVISION USER’S GUIDE 184

Close
Deletes all data and closes the window. Any unsaved information from all three
windows will be lost.

B.3.2 Feature Menu
The feature menu is used to add features to the inspection problem. Each feature
is designed to detect a specific type of pattern in the image.

Line
Line features detect regions of high gradient in the image. High gradient areas are
typically associated with edges, changes in surface, and corners in the part. To
define the search area for a line, the search box needs to be defined by specifying
the region height, width, and angle. Since a line may change direction in the
image, a range of allowed angles can also be specified.

The line feature returns three attribute values: the angle of the line, the
perpendicular distance from the origin, and the score. The score is based on how
strong the gradient is with the strongest being an instantaneous change from black
to white.

Circle
Circles are detected by looking for regions of high gradient that are aligned in a
circular pattern. The circle detection algorithm is able to detect radius and centre
point of the circle. The search region is determined by a box width and height,
which define the possible centre-point locations for the circle.

The circle feature outputs four attributes: Centre-point X, Centre-point Y, Radius,
and Score. Again, the score is based on the strength of the gradient for the
detected circle.

Hole
For faster searching, hole features can be used instead of circles. A hole feature is
a circle with a radius that is known. The algorithm will locate the centre-point of
the strongest circle with the specified radius.

The hole feature outputs the same four attributes as the Circle feature, but the
radius attribute does not change. It is merely a copy of the requested radius.

Colour
For some problems, colour is an important factor in recognizing objects. In the
algorithm, colour is treated in the Hue, Saturation, Value colour space. A colour
feature is a region with enough Saturation to be considered a colour. The hue

www.manaraa.com

APPENDIX B: QVISION USER’S GUIDE 185

space is then divided into several sections and the hue with the largest number of
pixels represented is reported along with the centroid of the pixels. Hue search
regions are defined by width and height. The number of divisions for the Hue is
specified, and the target Hue can also be specified. If the Hue with the largest
region is desired, then the target Hue is set to zero.

Colour features output four attributes: Centroid X, Centroid Y, Strongest Hue,
Area of pixels.

Squiggle
The squiggle feature detects a series of lines in each of the X and Y directions.
This feature tends to work well in regions with fine detail that won’t be
represented well by broader features such as lines and circles. It can also be used
to map the edge of an irregular part shape.

The Squiggle feature is specified by a width and height and the number of
divisions in each direction. A polarity setting determines which direction of
gradient is accepted (-1:white to black or 1:black to white) specifying a polarity of
zero accepts both directions.

B.3.3 Fixture Menu
A group of features can be used to define a fixture. Fixtures use easy-to-find
features in order to locate more precise regions. The nominal position of the
included features is recorded. Changes from the nominal position are analyzed for
other images, the average transformation is calculated, and any region based on
that fixture is transformed.

Edit Fixtures
Opens the fixture editing window so fixtures can be added, removed, or edited
(See Section B.3.8).

B.3.4 Window Menu
Transferring the data to other parts of the program can be accomplished using the
Window menu. Selecting the appropriate item launches the window and refreshes
the data within it.

www.manaraa.com

APPENDIX B: QVISION USER’S GUIDE 186

B.3.5 Toolbox
The toolbox (Figure B.1) gives quick access to create new features and operates
identically to the items in the Feature menu.

Figure B.1: The Configuration window toolbox

The toolbox contains four additional buttons: a delete feature button which
removes the current feature, an auto-search button, a statistics button, and a define
fixture button. The last three buttons invoke separate windows.

B.3.6 Statistics Window
The statistics window (Figure B.2) is used to view the range and distribution of
the data from the training image set. By processing all of the images in the set, it
is possible to quickly identify how well the feature attribute data is segmented and
to see if there are any outliers in the data.

www.manaraa.com

APPENDIX B: QVISION USER’S GUIDE 187

Figure B.2: The feature statistics screen.

Pass/Fail Check Boxes
If the pass and fail image sets are loaded, then both checkboxes at the top of the
screen will be active. Choose the image set you want to use for processing (or
both if you want to use all of the images).

Feature Selection
All of the features that are defined for the current inspection problem will be
displayed in the list box. Selected features will be included in the feature
extraction. By selecting fewer features, the processing time to extract feature data
will be reduced. Use the SHIFT key to select multiple features.

Compile Statistics
Goes through the selected image set and attribute values associated with the
features selected in the list box. A progress bar will indicate how many of the
images have been processed. When finished, the extracted values will be shown in
the display area.

Display Matrix
Writes the extracted feature attribute data to the main screen in order to make it
possible to identify the output from a specific image. The plotted data can be used
to identify which particular image is creating an outlier.

www.manaraa.com

APPENDIX B: QVISION USER’S GUIDE 188

Note Sometimes, outliers are caused by unusual conditions in the image that can
make feature extractors confused. However, it is also possible, for easier
to fix problems to be caught such as a feature search region being too
small, or a misclassified image being included in the training set.

Status Bar
Displays status information, warnings, and other information about the process.

Display Area
The data is plotted in the display area with the pass and fail data separated
visually. The far left side lists the features by name along with the attributes for
each feature. Attribute values from pass images are plotted as inverted blue
triangles, and from fail images as upright red triangles. The scale for each
attribute is indicated by the values appearing at either end of the bar.

B.3.7 Auto-search
The auto-search button instantly starts the search process based on the current
image, image set, and feature. Auto-search works by assuming that the feature in
the current image is correct and will begin to expand the region so a similar
feature is found in the other images. After each expansion, the original image is
tested to ensure that the same feature is being extracted. If not, region expansion
is halted.

Auto-search works by forming key-points in the current image and then
attempting to find similar key-points in the other images. By computing a
mapping between the key-points around the search area in each image, a probable
location for the feature in the new image is determined. The search region is
similarly transformed by adding the new region to the existing one and a new
expanded region is created.

Note The search region in the original image should be as small as possible as
each transformation will expand the size of the region even if the feature
can be found in the current space.

B.3.8 Fixture Window
The fixture editing window allows features or groups of features to be defined as
fixtures. Other features can then be defined relative to the fixture so that they are
automatically adjusted at the part moves (see Figure B.3).

www.manaraa.com

APPENDIX B: QVISION USER’S GUIDE 189

Figure B.3: The fixture editing screen.

To create a new fixture, click the NEW button and enter the name. The name can
be changed at any time by selecting EDIT. Currently defined features are listed in
the scroll box on the left side of the screen. Selecting a feature will display the
information for that feature on the right side of the screen. To add a feature to the
fixture check the INCLUDE IN FIXTURE box and enter the nominal feature
attribute values. These are the values that will be used to determine how far the
feature has moved from the reference location.

To capture the reference information from an image click the FROM IMAGE...
button and select an image file. The feature will be extracted from that image and
entered as the nominal values.

To delete a fixture, click DELETE. When finished, click SAVE, or to revert to the
state before the window was opened, click CANCEL.

B.3.9 Job Summary Area
Displays information about the current inspection job (see Figure B.4). The
currently defined features are displayed in the drop-down box and selecting a
specific feature will make that feature active.

www.manaraa.com

APPENDIX B: QVISION USER’S GUIDE 190

Figure B.4: The Job Summary portion of the Configuration window.

To change the name of a feature, use the EDIT NAME button and type the new
description. Changing the feature parameters is accomplished using the
FEATURE DEFINITION area on the sidebar. The DISPLAY ALL check box
shows the graphics for all features currently defined.

B.3.10 Feature Definition Area
The feature definition panel shows the extraction settings for the active feature
(see Figure B.5)

Figure B.5: The feature definition panel.

The contents of the panel will change depending on the type of feature as each
feature has different extraction parameters. In general, the first four to six lines
will refer to the area of interest specification, and the remainder are specific to
each feature. Clicking the “graphical select tool” (cursor inside a blue square) will
allow interactive selection of the area of interest.

www.manaraa.com

APPENDIX B: QVISION USER’S GUIDE 191

If any fixtures are defined, they can be selected by choosing a fixture from the
drop-down list. The feature search region will then be adjusted according to the
fixture position.

Note A feature cannot be associated with a fixture of which it is a part.

B.3.11 Feature Attributes Area
The feature attributes panel shows the active outputs for the selected feature. The
available attributes will change depending on the feature selected (see Figure
B.6).

Figure B.6: The feature attributes panel.

When a feature is selected, and there is a valid image in the main window, the
values of the feature attributes will also be shown alongside the attribute names.
Deselecting the checkboxes means that attribute data will not be included in
subsequent processing. The default is for all attributes to be selected. Some entries
may be disabled if the current feature has fewer than four attributes.

B.3.12 Image Set Area
The image set area displays thumbnails of the currently loaded image sets (see
Figure B.7) along with the image number and image file name.

www.manaraa.com

APPENDIX B: QVISION USER’S GUIDE 192

Figure B.7: The image set area of the Configuration screen.

When the set is loaded for the first time, a thumbnail image is created and
displayed in the thumbnail window. If the images in the directory change, the
thumbnails can be updated using the REFRESH THUMBNAILS button.

If both image sets are loaded, the currently displayed set can be selected using the
radio buttons above the thumbnails. Using the scroll bar will access images
beyond the bottom of the thumbnail area. Clicking on an image loads it from disk
and displays it in the main window. The blue arrow indicates the current image.

www.manaraa.com

APPENDIX B: QVISION USER’S GUIDE 193

B.4 Training Window

The training window is used to develop the classification system that will identify
pass and fail images.

B.4.1 File Menu
All items in the file menu operate identically to the File menu on the
Configuration screen (see Section B.3.1).

B.4.2 Method Menu
The Method menu is used to select which classifier should be used. Both
classifiers can be defined, but only one can be used and viewed at a time.

Neuro-Fuzzy
Selects the neuro-fuzzy classifier and updates the screen to show the data from the
neuro-fuzzy system. All tabs will change to display the data associated with the
current neuro-fuzzy system.

Threshold
Selects the threshold classifier and updates all screens and tabs to display the
threshold-based system data.

B.4.3 Process Menu
The process menu gives access to the main functions of this window. The
development of the classifier has been broken into four steps for clarity, but the
steps must be performed in order.

Extract Data
The extract data option takes the defined features and extracts the feature attribute
data from the images defined in the pass and fail sets. A warning will be issued if
these sets have not been loaded. When extraction is complete, the data will be
plotted in the main window in a manner similar to the statistics window (see
Figure B.2).

Divide Data Set
Takes the feature attribute information extracted in the previous step and
randomly divides it into three parts: training, checking, and testing. The user is
given the option of deciding the percentage of the dataset allocated to each part.

www.manaraa.com

APPENDIX B: QVISION USER’S GUIDE 194

The default is 40/20/40. Division is based on the smaller of the two data sets. If
one set is larger, then the extra data will go into the testing set. For the training
and checking sets, the number of pass and fail images will always be balanced.
After dividing the set, the training portion is randomly sorted in order to work
better for training the ANFIS network.

Note The division breakdown is entered by selecting three percentage values. If
the total of these three do not equal 100, then the default values will be
used instead.

Train Method
If the neuro-fuzzy method is active, then the feature attribute values are used
along with the associated classification to develop a neuro-fuzzy structure and
train it to produce the best classification accuracy possible (in terms of RMS error
on the training set). When complete, the membership functions will be displayed.

If the threshold method is active, then each attribute will be divided by thresholds
using the automatic algorithm. This algorithm searches for continuous groups of
pass or fail data and separates them by thresholds. The user inputs the minimum
size of group to qualify both in number of points included, and in span compared
to the total data range. The resulting groups are displayed when the process is
complete using shading underneath the data plots.

Optimize Solution
Attempts to determine the best feature attribute combination for the current
inspection task. The user is asked for the checking error at which to stop
optimization. The default value is 0 which will continue optimization until no
further improvement is possible. The results are displayed in tabular form when
complete.

B.4.4 Window Menu
Identical to the Configuration window (see Section B.3.4).

B.4.5 Job Summary Area
The job summary area (see Figure B.8) shows relevant information about the
currently loaded data.

www.manaraa.com

APPENDIX B: QVISION USER’S GUIDE 195

Figure B.8: The Job Summary area for the Training window.

If the Training window was opened from another window, then any data that was
defined in the previous window will be loaded and displayed. The number of
features and attributes are based on the total number defined and do not change
when different optimizations are selected.

B.4.6 Feature Data Tab
The feature data tab shows a plot of the feature attribute data in the main window.
The feature names are shown alongside the pass and fail data (see Figure B.9).
Using the scroll bar will show any attributes which appear off the bottom of the
page.

Figure B.9: The feature data plot in the Training window.

www.manaraa.com

APPENDIX B: QVISION USER’S GUIDE 196

Note For all tabs, only the feature attributes for the currently selected
optimization are shown. If an optimization is selected with only one
feature attribute, then only one plot will appear when the Feature Data tab
is selected. To see all of the plots again, the default optimization must be
selected (all attributes active).

B.4.7 Membership FNs/Groupings Tab
If the neuro-fuzzy method is selected, then this tab shows the membership
functions plotted against the data for that attribute (see Figure B.10). Different
attributes can be accessed using the scroll bar on the side of the window. The
dimension number and attribute name are shown in the top left corner for
reference.

Figure B.10: The membership function plot in the Training window

If the threshold method is selected, then this tab shows a plot similar to the
Feature Data tab but with shading added to show the results of the threshold
training process (see Figure B.11). Regions shaded blue have been set up as pass
regions and red regions as fail. Feature attributes which are shaded grey are too
evenly distributed to form any thresholds. Using the scroll bar will show any
attributes which appear off the bottom of the page.

www.manaraa.com

APPENDIX B: QVISION USER’S GUIDE 197

Figure B.11: The threshold grouping plot in the Training window

B.4.8 FIS Structure Tab
This tab is only active when the neuro-fuzzy method is selected. It displays the
nodes and links for the current neuro-fuzzy network (see Figure B.12).

www.manaraa.com

APPENDIX B: QVISION USER’S GUIDE 198

Figure B.12: The neuro-fuzzy structure display in the Training window.

The inputs (yellow) are on the left and are connected to the input membership
function nodes. These are then connected to the rules (grey). Each rule is
associated with an output node which is coloured either blue or red depending if
its value is above or below 0.5 respectively. This gives some indication of which
rules are contributing to a pass classification, and which rules are contributing to a
fail classification.

B.4.9 Optimizations Tab
After the optimization has been performed, this tab shows the results in tabular
form (see Figure B.13).

www.manaraa.com

APPENDIX B: QVISION USER’S GUIDE 199

Figure B.13: The optimization display in the Training window.

Each row of the table represents a particular optimization run. The RMS error on
the checking data is displayed in the left hand column under the run number. Each
of the columns on the right side corresponds to one of the feature attributes as
indicated by the labels above the column. If an attribute has a red dot for a
particular run, then it was included in that optimization.

Clicking on one of the rows will configure all of the other tabs to show data
related to that optimization. The selected run will be highlighted in blue.

Note When the neuro-fuzzy method is selected, clicking on an optimization row
rebuilds the network to match the attributes selected. This may take a
moment to complete.

B.4.10 Testing Tab
The testing screen shows the results from using the current method to classify the
data in the data set (see Figure B.14).

www.manaraa.com

APPENDIX B: QVISION USER’S GUIDE 200

Figure B.14: The testing screen plot in the Training window.

The check boxes along the top of the screen can be used to turn the display on or
off for each portion of the data set (Training, Checking, and Testing).

Note The results are plotted in the order they appear in the data set. The training
data set gets sorted randomly before training so pass and fail images will
appear in random order on the plot. The checking and testing datasets are
always sorted with the pass data first.

Each point is identified as either being correctly classified (green dot), a false
positive (red cross), or a false negative (blue star). Points classified as uncertain
either because of a low confidence output from the neuro-fuzzy network, or
because the fall too close to 0.5 will be circled. The boundaries for the uncertain
region around 0.5 are shown by the blue and red horizontal lines.

Points which fall outside the range of the plot are indicated by upright or inverted
triangles on the upper or lower boundaries. The colour of these arrows indicates
their state according to the colours in the legend.

The top left corner of the screen gives a summary of the results for the data shown
on the plot. For the neuro-fuzzy method, the entry “Confidence < #.##” records
the number of uncertain values.

www.manaraa.com

APPENDIX B: QVISION USER’S GUIDE 201

Note To change minimum confidence that must be achieved for a point not to
be marked uncertain and the boundaries around 0.5, the code must be
altered. See the section on the plotTestResults function in Appendix A for
details.

In order to identify which image is causing a particular false negative or false
positive, open the main Matlab window. There will be a text listing of the
misclassified images which gives the pass or fail set number. This matches the
number displayed in the Configuration window.

B.5 Camera Window

The camera window is used to view the output of the classifier for new live
camera or stored images. It can also be used to update the network with new
image information.

B.5.1 File Menu
The project related commands and the CLOSE command on the File menu are
identical to those in the Training and Configuration windows (see Section B.3.1).

Load Test Set...
Allows a directory to be selected which contains example images. These images
will be displayed as thumbnails on the right side of the screen and can be selected
to simulate camera images. The process by which images are located in the
selected directory is identical to the method used when opening pass or fail image
sets (see Section B.3.1).

B.5.2 Processing Menu

Process Test Set
Reserved for future use. This command would classify all of the images loaded in
the test set and report the results in a method similar to the testing tab of the
Training screen.

Show Test Results
Reserved for future use. Would display the results from the most recent run of
“Process Test Set”.

www.manaraa.com

APPENDIX B: QVISION USER’S GUIDE 202

Select Processor
Allows the user to select between the neuro-fuzzy and threshold-based classifiers
(and algorithms from other schools if implemented later). This is a global setting
so it will initially match the selection made in the Training window. When a new
processor is selected, the Inspection area will update to reflect the output of the
current method.

B.5.3 Window Menu
Identical to the window menus in the Training and Configuration windows (see
Section B.3.4)

B.5.4 File Summary Area
The file summary area shows basic information about the current project. The
first line gives the number of feature attributes that are active, and the second line
gives the details of the neuro-fuzzy structure.

Note If the number of feature attributes does not match the number of inputs to
the neuro-fuzzy structure, processing of the images will not be possible.

B.5.5 Inspection Area
When ENABLE INSPECTION is checked, the inspection area shows the results
of running the current classifier on the image in the main window (see Figure
B.15).

www.manaraa.com

APPENDIX B: QVISION USER’S GUIDE 203

Figure B.15: The inspection area of the Camera window

Checking DISPLAY GRAPHICS will show the feature extraction regions and the
extracted features. A legend in the top right corner identifies the feature type and
number.

Checking ALLOW RETRAINING will ask the operator to enter the correct
classification whenever an image is encountered that has been classified as
uncertain. This information will then be used to update the neuro-fuzzy network.

Note Network updates occur to the active network structure only. If the
Training window is re-opened the active network may be updated from the
full network structure and changes could be lost. Any changes due to
retraining should be saved to a new project file.

The Method section of the display indicates the active classification system
(neuro-fuzzy or threshold for now). And the decision output of that classifier is
shown under “Decision”. The three possible decisions are Pass, Fail, and
Uncertain. Details of the classification are given by the decimal output of the
classifier “FIS Output”, and the confidence of the decision (based on the rule
firing strengths within the network).

B.5.6 Camera Area
The camera panel is used to connect to an external camera DCAM compliant
camera (see Figure B.16).

www.manaraa.com

APPENDIX B: QVISION USER’S GUIDE 204

Figure B.16: The camera control panel of the Camera window

The camera must be connected and powered before selecting OPEN CAMERA.
An error message will appear if the camera is not found. For more details about
camera set up see the entry for OpenCamera.m in Appendix A.

Once the camera is opened, the Open Camera button will change to Close
Camera, the image of the camera will become solid, and the other three buttons
will be activated.

The SINGLE FRAME button captures one frame from the camera and displays it
in the main window. If inspection is enabled, then the image will be classified,
and the results displayed in the Inspection panel.

ONLINE and OFFLINE toggle the camera in and out of continuous capture
mode. In continuous mode images are captured and displayed to the main window
as fast as the software can handle. If a smoother image is desired (for example for
doing the initial set up), then the inspection can be disabled.

Note Always go OFFLINE before closing the camera. Failure to do this may
result in the camera locking up.

 Button
When setting up the system with a new camera, or camera location, it is useful to
be able to have some reference for how the images should look compared to the
training images. Clicking the Show Reference button (located just above the main
window) allows the user to select a reference image. The outlines of this image
are then overlaid onto the camera image it can be aligned. Clicking the button
again removes the outline.

B.5.7 Image Set Area
The image set area shows a list of thumbnails from the current Test Set. The list
operates in a similar manner to the thumbnail set in the Configuration window.
Clicking an image will load it into the main window and perform inspection (if
enabled).

www.manaraa.com

 205

Appendix C

Camera Specifications

www.manaraa.com

APPENDIX C. CAMERA SPECIFICATIONS 206

Figure C.1: Specification sheet for the Cognex® 5400C camera in use at Van Rob
(Sure, 2007)

www.manaraa.com

APPENDIX C. CAMERA SPECIFICATIONS 207

Figure C.2: Specification sheet for the Basler 312fc Camera (Basler, 2007)

www.manaraa.com

APPENDIX C. CAMERA SPECIFICATIONS 208

Figure C.3: Specification sheet for the imi tech IMC1080FT Camera (imi tech, 2007)

www.manaraa.com

 209

Appendix D

Dataset Description

D.1 Dataset 1

The first image set obtained from Van Rob contains a total of 706 images. Of those, 651

are pass images and 55 show something wrong that should cause the part to fail. This

image set has good colour rendition, but there are often changes in clip appearance due to

the reflections off the clip surface.

www.manaraa.com

APPENDIX D. DATATSET DESCRIPTION 210

Figure D.1: An example of “View 2” under the original lighting conditions at Van Rob.
Two clips need to be inspected as indicated.

D.2 Dataset 2

The second image set obtained from Van Rob contains a total of 3,506 images. Of those,

3223 are pass images and 283 show something wrong that should cause the part to fail.

Although the reflections in these images are more stable than the first image set, the

lighting is so strong that almost all colour information is lost.

Clip ‘A’

Clip ‘B’

www.manaraa.com

APPENDIX D. DATATSET DESCRIPTION 211

Figure D.2: An example of “View 2” from the second Van Rob image set. Two clips
need to be inspected as indicated.

Table D.1: Summary of the images included for View 2

Directory
Name

Description # of Images

Class_BadA Only clip A is missing 47
Class_BadAB Both clips are missing 50
Class_BadB Only clip B is missing/incorrectly inserted/bent 13
Class_None No clips are missing 1,595

Clip ‘A’

Clip ‘B’

www.manaraa.com

APPENDIX D. DATATSET DESCRIPTION 212

Figure D.3: An example of “View 8” from the second Van Rob image set. Four clips
need to be inspected as indicated.

Table D.2: Summary of the images included for View 8

Directory
Name

Description # of Images

Class_BadAB Both clips A and B are missing 14
Class_BadB Only clip B is missing 26
Class_BadC Only clip C is missing/not inserted correctly 9
Class_BadD Only clip D is missing/not inserted correctly/bent 33
Class_None No clips are missing 627

Clip ‘A’ Clip ‘B’

Clip ‘C’

Clip ‘D’

www.manaraa.com

APPENDIX D. DATATSET DESCRIPTION 213

Figure D.4: An example of “View 9” from the second Van Rob image set. Three clips
need to be inspected as indicated.

Table D.3: Summary of the images included for View 9

Directory
Name

Description # of Images

Class_BadAB Both clips A and B are missing 36
Class_BadB Only clip B is missing 1
Class_BadC Only clip C is missing/not inserted correctly 3
Class_BadD Only clip D is missing/not inserted correctly/bent 51
Class_None No clips are missing 1,009

Clip ‘A’ Clip ‘B’

Clip ‘C’

www.manaraa.com

APPENDIX D. DATATSET DESCRIPTION 214

D.3 Laboratory Generated Dataset

The laboratory generated images consist of 100 images of a portion of the beam

containing one J-type clip. The pass images have the clip present under various lighting

conditions (see Figure D.5).

Figure D.5: An example of a pass image from the laboratory generated image set.

Since the clip can rotate when properly installed, several different clip orientations are

imaged as part of the set (see Figure D.6).

www.manaraa.com

APPENDIX D. DATATSET DESCRIPTION 215

Figure D.6: An example of a pass image with the clip rotated but still correctly installed.

For the fail images, the clip is completely removed and the part is again imaged under

various lighting conditions (see Figure D.7).

www.manaraa.com

APPENDIX D. DATATSET DESCRIPTION 216

.

Figure D.7: An example of a fail image from the laboratory generated image set.

